Real Time Properties for Interrupt Timed Automata

B. Bérard[†] S. Haddad[‡] <u>M. Sassolas[†]</u>

[†]UPMC, LIP6/MoVe, CNRS UMR 7606, Paris, France [‡]ENS de Cachan, LSV, CNRS UMR 8643, Cachan, France

> MeFoSyLoMa June 18, 2010

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

The context: timed and hybrid systems

The Interrupt Timed Automata Model

The model checking problem

Decidable fragments

Conclusion

Real Time Properties for ITA

Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

The context: timed and hybrid systems

The Interrupt Timed Automata Model

The model checking problem

Decidable fragments

Context

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

Modelling and verification of hybrid systems

Hybrid automaton = finite automaton + variables

- Variables evolve in states and can be tested and updated on transitions.
- Clocks are variables with slope 1 in all states
- Stopwatches are variables with slope 0 or 1
- ► Timed automaton = finite automaton + clocks with guards x + c ⋈ 0 and resets x := 0

Example (The gas burner)

Leaking

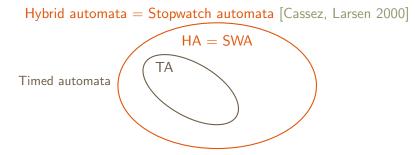
$$x \le 1$$
, stop, $x := 0$
 $\dot{y} = 1$
 $x \ge 30$, start, $x := 0$
Not leaking
 $\dot{y} = 0$

Previous results

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18


Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

- The reachability problem is undecidable for a timed automaton with one stopwatch [Henzinger et al. 1998].
- Model checking timed automata with stopwatch observers is undecidable for WCTL (a weighted extension of CTL) [Bouyer et al. 2006].
- Reachability and model checking TCTL is decidable on TA [Alur, Dill 1990] [Alur, Courcoubetis, Dill 1993].

Motivations

Real Time Properties for ITA

Mathieu Sassolas (Lip6/MoVe)

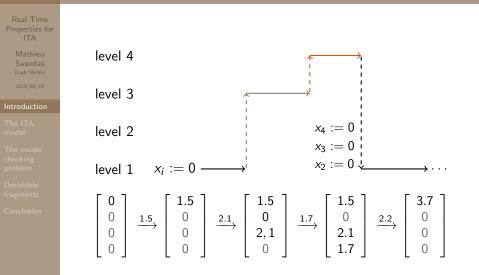
2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments


Conclusion

Theoretical

- To express more than timed automata
- To obtain decidability results
- Practical
 - In operating systems, tasks are scheduled according to their priority level.
 - A higher priority task can interrupt a lower priority task.
- An interrupt clock can be seen as a restricted type of stopwatch: only one evolves at a given time.

Clock interruptions

7 / 21

Real Time Properties for ITA

Mathieu Sassolas (Lip6/MoVe)

2010/06/18

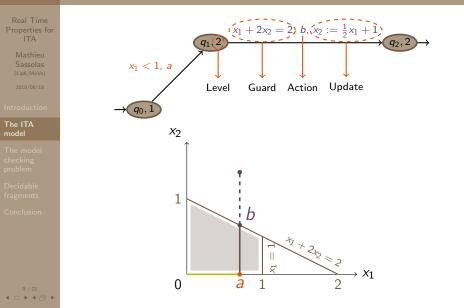
Introductio

The ITA model

The mode checking problem

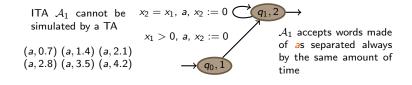
Decidable fragments

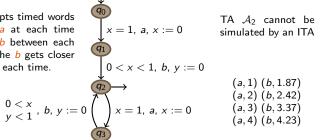
Conclusion


The context: timed and hybrid systems

2 The Interrupt Timed Automata Model

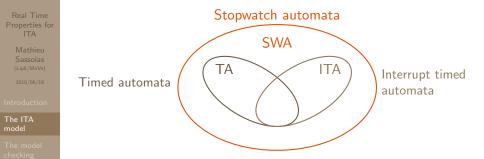
- The model checking problem
- Decidable fragments
- 5 Conclusion


UPMC Interrupt Timed Automata



ITA and TA are incomparable

model



 \mathcal{A}_2 accepts timed words with a a at each time unit, a *b* between each a, and the b gets closer to the *a* each time.

4 D > 4 A P

Expressiveness and decidability trade-off

Previous results

- SWA: Reachability and model checking undecidable
- TA: Reachability and model checking decidable
- ITA: Reachability decidable

What about model checking on ITA ?

UPmC

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The model checking problem

Decidable fragments

Conclusion

The context: timed and hybrid systems

The Interrupt Timed Automata Model

The model checking problem

Decidable fragments

Timed CTL

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The model checking problem

Decidable fragments

Conclusion

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• "No error in the first 50 time units" $y.(A \neg \operatorname{error} \bigcup y > 50)$

"A normal state is reached when the clock of level 2 is greater than the one of level 1"

 $\begin{array}{l} \mathsf{E} \top \mathsf{U} \text{ normal } \land x_2 \geq x_1 \text{ or } \mathsf{EF} \operatorname{normal} \land x_2 \geq x_1 \\ \bullet \text{ "We never leave level 1 for more than 5 time units"} \\ \mathsf{AG} \left(\neg \ell_1 \Rightarrow z. (\mathsf{AF} \ell_1 \land z < 5) \right) \end{array}$

► Timed CTL with explicit clocks:

$$\psi ::= p \mid y + b \bowtie 0 \mid \sum_{i \in I} a_i \cdot x_i + b \bowtie 0 \mid y . \psi \mid$$
$$A \psi U \psi \mid E \psi U \psi \mid \psi \land \psi \mid \neg \psi$$

• Given a formula φ and an ITA A, does $A \models \varphi$?

Theorem

Model checking TCTL formula on ITA is undecidable.

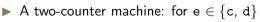
Model checking TCTL on ITA is undecidable

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

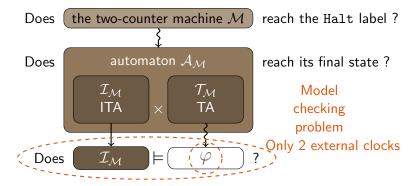
Introduction


The ITA model

The model checking problem

Decidable fragments

Conclusion


A D b 4 A b

- "e++ goto 1",
- "if e > 0 then e-- goto 11 else goto 12",

```
• "Halt".
```

The halting problem of a two-counter machine is undecidable

Real Time Properties for

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

The context: timed and hybrid systems

The Interrupt Timed Automata Model

The model checking problem

Decidable fragments

15 / 21 ∢ □ ▶ ∢ 🗇 ▶

TCTL without external clocks

Real Time Properties for

> Mathieu Sassolas (Lip6/MoVe)

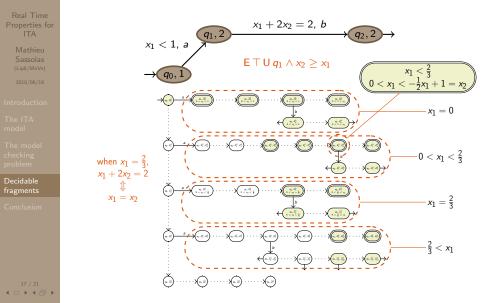
2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments


Conclusion

- Only $\sum_{i \in I} a_i \cdot x_i + b \bowtie 0$ comparisons.
- ▶ For example $\mathsf{E} \top \mathsf{U} \operatorname{normal} \land x_2 \ge x_1$
- The truth value of the comparison can be abstracted by regions.
- A classical CTL model checking algorithm can be applied.

Theorem

Model checking TCTL without external clocks on ITA can be done in 2-EXPSPACE and PSPACE when the number of clocks is fixed.

URING Example of model-checking procedure

A fragment of TCTL with only one external clock

Real Time Properties for ITA

> Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

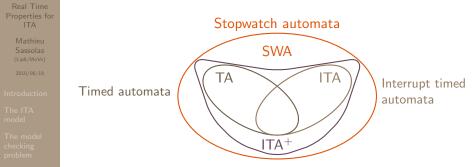
Conclusion

A D b 4 A b

- ► A particular case of TCTL with 1 external clock.
- ▶ Clock conditions can only restrict the *Until* operator with urgency $(y \le b \text{ or } y < b)$ or delay $(y \ge b \text{ or } y > b)$.
 - There can be no imbrication of Untils.
- For example $y.(A \neg \operatorname{error} U y > 50)$

Theorem

Model checking this fragment of TCTL on ITA is decidable.


The model checking problem

Conclusion

Summary and future work

Decidable fragments

Conclusion

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ▶ ITA allow reasoning on systems with interruptions.
- Its expressive power is incomparable with the TA model.
- Unfortunately model checking of full TCTL is impossible.
- ▶ Nevertheless some interesting fragments are still decidable.

Thank you

	Re	eal	Ti	im	е
Ρ	ro	per	tie	es	for
		IT	-Λ		

Mathieu Sassolas (Lip6/MoVe)

2010/06/18

Introduction

The ITA model

The mode checking problem

Decidable fragments

Conclusion

Any questions ?