
Diagrams of Mobile Interactions

Diagrams of Mobile Interactions

Frédéric Peschanski
University Pierre & Marie Curie - Paris 6

LIP6 - APR

joint work with Hanna Klaudel (IBisc/Evry)
and Raymond Devillers (Univ. Libre de Bruxelles)

Mefosyloma–seminar - Nov. 5th 2010 - Paris



Diagrams of Mobile Interactions

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Preliminaries

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A
c

B
c

C

νc
νd

d

ν(c)[A(c ,m) | ν(d)[B(c , d) | C (d)]] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A
c

B
c

C

νc
νd

d

ν(c)[c(x).x〈m〉.P | ν(d)[c〈d〉.Q | C (d)]] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A
c

B
c

C

νc
νd

d

d

ν(c)ν(d)[c(x).x〈m〉.P | c〈d〉.Q | C (d)] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A B
c

C

νc
νd

d
d

ν(c)ν(d)[d〈m〉.P | Q | d(y).R(y)] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A B
c

C

νc
νd

d
d

ν(c)ν(d)[d〈m〉.P | Q | d(y).R(y)] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

The π-calculus in a nutshell

A B
c

C

νc
νd

d
d

ν(c)ν(d)[P | Q | R(m)] A(c ,m) = c(x).x〈m〉.P
B(c , d) = c〈d〉.Q
C (d) = d(y).R(y)



Diagrams of Mobile Interactions
Preliminaries

Splendor and misery of the π-calculus

Splendor
A minimal language to characterize
concurrent and dynamic (a.k.a. “mobile”) systems
A very expressive language
A (too ?) large body of theoretical works

Misery
A somewhat unsettled theory with many semantic variants
(early, late, open, barbed, etc.)
A lack of modelling and verification tools
A lack of implementations (cf. the π-threads project)



Diagrams of Mobile Interactions
Preliminaries

Splendor and misery of the π-calculus

Splendor
A minimal language to characterize
concurrent and dynamic (a.k.a. “mobile”) systems
A very expressive language
A (too ?) large body of theoretical works

Misery
A somewhat unsettled theory with many semantic variants
(early, late, open, barbed, etc.)
A lack of modelling and verification tools
A lack of implementations (cf. the π-threads project)



Diagrams of Mobile Interactions
Preliminaries

Why π ?

Why studying the π-calculus ?

Initially, to study dynamically reconfigurable systems (DRS)
Then, to study mobile agents (which are DRS)
Now, because it is a path towards program verification

More technically,

to study the (finite) verification of infinite systems
to study graph rewriting, especially graph relabelling



Diagrams of Mobile Interactions
Preliminaries

Why π ?

Why studying the π-calculus ?

Initially, to study dynamically reconfigurable systems (DRS)
Then, to study mobile agents (which are DRS)
Now, because it is a path towards program verification

More technically,

to study the (finite) verification of infinite systems
to study graph rewriting, especially graph relabelling



Diagrams of Mobile Interactions
Preliminaries

Why π ?

Why studying the π-calculus ?

Initially, to study dynamically reconfigurable systems (DRS)
Then, to study mobile agents (which are DRS)
Now, because it is a path towards program verification

More technically,

to study the (finite) verification of infinite systems
to study graph rewriting, especially graph relabelling



Diagrams of Mobile Interactions
Motivations

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Motivations

Modelling with the π-calculus

Objective 1
Design a visual language with expressive power comparable to the
π-calculus and suitable for modelling purpose

Existing approaches
early attempts Milner’s π-nets and Parrow’s interaction diagrams

+ pedagogical tools
- informal, discontinued

Graph encodings in the DPO framework
+ formal approaches
- low-level, partial support, not suitable
for verification

Claim : (control) graphs should be static (cf. UML, Petri-nets, etc.)



Diagrams of Mobile Interactions
Motivations

Verification techniques

Objective 2
Decidable characterization + efficient verification techniques

Drawbacks of existing approaches
Mobility workbench based on open bisimilarity

complex ad-hoc algorithm for partition refinement
non-trivial detection of inactive names
costly because of name substitutions

HAL based on HD-Automata
fine-grained interpretation of freshness
non-trivial detection of inactive names
indirect transformation (π → HDA → FSM)

Claim : simpler and more efficient techniques can be developed



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The modelling framework

π ◦graphs

http://lip6.fr/Frederic.Peschanski/pigraphs

A dual formalism
A visual language inspired by Petri nets
A (textual) variant of the π-calculus

A dual characterization
graph relabelling
labelled transition systems (LTS)

http://lip6.fr/Frederic.Peschanski/pigraphs


Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦ ◦◦

νc x mνdy

νd(y) 0 ‖ νc〈νd〉 0 ‖ νc(x) x〈m〉 0

R
c

Q
c

P

νc νd

d

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦ ◦◦

νc x mνdy

νd(y) 0 ‖ νc〈νd〉 0 ‖ νc(x) x〈m〉 0

R
c

Q
c

P

νc νd

d

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦ ◦

νc νd

◦

mνdy

νd(y) 0 ‖ νc〈νd〉 0 ‖ νc(νd) νd〈m〉 0

R Q

P

νcνd

dd

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦ ◦

νc νd

◦

mνdy

νd(y) 0 ‖ νc〈νd〉 0 ‖ νc(νd) νd〈m〉 0

R Q

P

νcνd

dd

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦

νc νd

◦

m

◦

νdm

νd(m) 0 ‖ νc〈νd〉 0 ‖ νc(νd) νd〈m〉 0

R Q

P

νcνd

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦

νc νd

◦

m

◦

νdm

νd(m) 0 ‖ νc〈νd〉 0 ‖ νc(νd) νd〈m〉 0

R Q

P

νcνd

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

The (static) π-graph language

Principle
A “token-game” interpretation of the π-calculus constructs

Example : illustrating mobility

◦

νc νd

◦

m

◦

νdm

νd(m) 0 ‖ νc〈νd〉 0 ‖ νc(νd) νd〈m〉 0

R Q

P

νcνd

Remark 1 : the π-graphs have a static structure

Remark 2 : direct correspondence with a (textual) process calculus



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

◦
∗

νa

c

0 : ∗ [c〈νa〉.0]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗
◦

1!

c

1 : ∗[ c〈νa | 1!〉 .0]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

1!

c

c〈1!〉−−−→ 1 : ∗[c〈νa | 1!〉. 0 ]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

◦
∗

νa

c

c〈1!〉−−−→ 1 : ∗ [c〈νa〉.0]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗
◦

2!

c

c〈1!〉−−−→ 2 : ∗[ c〈νa | 2!〉 .0]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

2!

c

c〈1!〉−−−→ c〈2!〉−−−→ 2 : ∗[c〈νa | 2!〉. 0 ]

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

2!

c

c〈1!〉−−−→ c〈2!〉−−−→ 2 : ∗[c〈νa | 2!〉. 0 ]
c〈3!〉−−−→

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

2!

c

c〈1!〉−−−→ c〈2!〉−−−→ 2 : ∗[c〈νa | 2!〉. 0 ]
c〈3!〉−−−→ c〈4!〉−−−→ etc .

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

2!

c

c〈1!〉−−−→ c〈2!〉−−−→ 2 : ∗[c〈νa | 2!〉. 0 ]
c〈3!〉−−−→ c〈4!〉−−−→ etc .

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

π-graphs with iterators

Iterators
Recursive behaviors as (static) graphs rewrites

Example : A generator of fresh names :

∗

◦

2!

c

c〈1!〉−−−→ c〈2!〉−−−→ 2 : ∗[c〈νa | 2!〉. 0 ]
c〈3!〉−−−→ c〈4!〉−−−→ etc .

Remark 1 : synchronous
interpretation of binders using a
linear clock (cf. [Sofsem’09]LNCS 5404)

Remark 2 : (minimalistic) infinite
system



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

Operational semantics

Framework : graph relabelling + abstraction
local in-place relabelling rules (eg : κ; γ ` τ P τ−→ κ; γ ` τ P )
abstract from low-level rewrites :
π

µ−→ π′ (LTS) if π
ε∗µ−−→ π′ (graphs)

Important : graph context κ; δ with
κ a global clock

a synchronous interpretation of inputs and bound outputs
provides freshness “for free”

δ is a dynamic partition of names wrt. equality
a unified interpretation of synchronizations and match
allow names to be equated “on-the-fly”
integrates read-write causality

⇒ Ground transitions (+ bisimulation)



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

Operational semantics

Framework : graph relabelling + abstraction
local in-place relabelling rules (eg : κ; γ ` τ P τ−→ κ; γ ` τ P )
abstract from low-level rewrites :
π

µ−→ π′ (LTS) if π
ε∗µ−−→ π′ (graphs)

Important : graph context κ; δ with
κ a global clock

a synchronous interpretation of inputs and bound outputs
provides freshness “for free”

δ is a dynamic partition of names wrt. equality
a unified interpretation of synchronizations and match
allow names to be equated “on-the-fly”
integrates read-write causality

⇒ Ground transitions (+ bisimulation)



Diagrams of Mobile Interactions
Introducing the (static) π-graphs

Operational semantics

Framework : graph relabelling + abstraction
local in-place relabelling rules (eg : κ; γ ` τ P τ−→ κ; γ ` τ P )
abstract from low-level rewrites :
π

µ−→ π′ (LTS) if π
ε∗µ−−→ π′ (graphs)

Important : graph context κ; δ with
κ a global clock

a synchronous interpretation of inputs and bound outputs
provides freshness “for free”

δ is a dynamic partition of names wrt. equality
a unified interpretation of synchronizations and match
allow names to be equated “on-the-fly”
integrates read-write causality

⇒ Ground transitions (+ bisimulation)



Diagrams of Mobile Interactions
A decidable characterization

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
A decidable characterization

Infinity and π-graphs (cf. [Infinity 2010] EPTCS vol. 39)

Objective
a finite characterization of finite-control behaviors

Sources of infinity :

1 infinite low-level ε transitions
2 infinite partition δ of names
3 unbounded (linear) clock κ (ex. generator of fresh names)

Counter-measures :

1 syntactic constraints (no match-only paths)
2 compact representations (implicit singletons)
3 structured clock model : causal clocks
4 garbage collection of inactive names



Diagrams of Mobile Interactions
A decidable characterization

Infinity and π-graphs (cf. [Infinity 2010] EPTCS vol. 39)

Objective
a finite characterization of finite-control behaviors

Sources of infinity :
1 infinite low-level ε transitions
2 infinite partition δ of names
3 unbounded (linear) clock κ (ex. generator of fresh names)

Counter-measures :

1 syntactic constraints (no match-only paths)
2 compact representations (implicit singletons)
3 structured clock model : causal clocks
4 garbage collection of inactive names



Diagrams of Mobile Interactions
A decidable characterization

Infinity and π-graphs (cf. [Infinity 2010] EPTCS vol. 39)

Objective
a finite characterization of finite-control behaviors

Sources of infinity :
1 infinite low-level ε transitions
2 infinite partition δ of names
3 unbounded (linear) clock κ (ex. generator of fresh names)

Counter-measures :
1 syntactic constraints (no match-only paths)
2 compact representations (implicit singletons)
3 structured clock model : causal clocks
4 garbage collection of inactive names



Diagrams of Mobile Interactions
A decidable characterization

Causal clocks

Preamble : No
def
= {n! | n ∈ N} (resp. Ni

def
= {n? | n ∈ N}) is the set

of fresh output (resp. fresh input) names

Linear clocks vs. Causal clocks
κ ∈ N κ ∈ No → P(Ni )

init def
= 0 init def

= {}
out(κ)

def
= nexto(κ)! out(κ)

def
= κ ∪ {nexto(κ)! 7→ ∅}

in(κ)
def
= nexti(κ)? in(κ)

def
=

{
o 7→ (κ(o) ∪ {nexti(κ)?})
| o ∈ dom(κ)

}
nexto(κ)

def
= κ+ 1 nexto(κ)

def
= min (N+ \ {n | n! ∈ dom(κ)})

nexti(κ)
def
= κ+ 1 nexti(κ)

def
= min (N+ \ {n | n? ∈

⋃
cod(κ)})

read-write causality :
n! ≺κ m?

def
= n < m n! ≺κ m?

def
= n! ∈ dom(κ) ∧m? ∈ κ(n!)



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P

c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P

c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P

d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P

c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P

ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P
(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P

c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P

c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P

c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P
c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P

c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P
c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P

9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Illustrating read/write causality

Compare :
{} ` c〈νa〉 d(x)[νa = x ]P
c1!−−→ {1! 7→ ∅} ` c〈νa p 1!〉 d(x) [(νa p 1!) = (x)]P
d2?−−→ {1! 7→ {2?}} ` c〈νa p 0〉d(x p 2?) [(νa p 1!) = (x p 2?)] P
ε−→ {1! 7→ {2?}}; 1! = 2? ` c〈νa p 1!〉d(x p 2?)[(νa p 1!) = (x p 2?)] P

(note : 1! ≺κ 2? since 2? ∈ κ(1!))

with :
{} ` d(x) c〈νa〉[νa = x ]P
c1?−−→ {} ` d(x p 1?) c〈νa〉 [(νa) = (x p 1?)]P
c2!−−→ {2! 7→ ∅} ` d(x p 1?)c〈νa p 2!〉 [(νa p 2!) = (x p 1?)] P
9 because 2! 6≺κ 1? (1? 6∈ κ(2!))



Diagrams of Mobile Interactions
A decidable characterization

Garbage collection of inactive names

Definition : Active name
A name n is active in a π-graph with clock κ and partition δ iff

either it is instantiated in the graph
or it is a component of κ and δ (only for fresh outputs)

Question : how to avoid κ and δ to grow infinitely ?

Answer : Garbage collection of inactive names
Let κ; δ ` G a graph with instantiations I then
gc(π)

def
= κ′; δ′ ` G such that γ′
def
= {E ∩ (Nf ∪No ∪ cod(I )) | E ∈ γ} \ {∅}

κ′
def
= {d 7→ κ(d) ∩ cod(I ) | d ∈ dom(κ) ∧

(
d ∈ cod(I )
∨({d} 6∈ γ′)

)
}



Diagrams of Mobile Interactions
A decidable characterization

Garbage collection of inactive names

Definition : Active name
A name n is active in a π-graph with clock κ and partition δ iff

either it is instantiated in the graph
or it is a component of κ and δ (only for fresh outputs)

Question : how to avoid κ and δ to grow infinitely ?

Answer : Garbage collection of inactive names
Let κ; δ ` G a graph with instantiations I then
gc(π)

def
= κ′; δ′ ` G such that γ′
def
= {E ∩ (Nf ∪No ∪ cod(I )) | E ∈ γ} \ {∅}

κ′
def
= {d 7→ κ(d) ∩ cod(I ) | d ∈ dom(κ) ∧

(
d ∈ cod(I )
∨({d} 6∈ γ′)

)
}



Diagrams of Mobile Interactions
A decidable characterization

Garbage collection of inactive names

Definition : Active name
A name n is active in a π-graph with clock κ and partition δ iff

either it is instantiated in the graph
or it is a component of κ and δ (only for fresh outputs)

Question : how to avoid κ and δ to grow infinitely ?

Answer : Garbage collection of inactive names
Let κ; δ ` G a graph with instantiations I then
gc(π)

def
= κ′; δ′ ` G such that γ′
def
= {E ∩ (Nf ∪No ∪ cod(I )) | E ∈ γ} \ {∅}

κ′
def
= {d 7→ κ(d) ∩ cod(I ) | d ∈ dom(κ) ∧

(
d ∈ cod(I )
∨({d} 6∈ γ′)

)
}



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

◦
∗

νa

c

{} : ∗ [c〈νa〉.0]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗
◦

1!

c

{1! 7→ ∅} : ∗[ c〈νa | 1!〉 .0]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗

◦

1!

c

c〈1!〉−−−→ {1! 7→ ∅} : ∗[c〈νa | 1!〉. 0 ]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

◦
∗

νa

c

c〈1!〉−−−→ {} : ∗ [c〈νa〉.0]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗
◦

1!

c

c〈1!〉−−−→ {1! 7→ ∅} : ∗[ c〈νa | 1!〉 .0]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗

◦

1!

c

c〈1!〉−−−→ c〈1!〉−−−→ {1! 7→ ∅} : ∗[c〈νa | 1!〉. 0 ]



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗

◦

1!

c

c〈1!〉−−−→ c〈1!〉−−−→ {1! 7→ ∅} : ∗[c〈νa | 1!〉. 0 ]
c〈1!〉−−−→



Diagrams of Mobile Interactions
A decidable characterization

Illustrating garbage collection

∗

◦

1!

c

c〈1!〉−−−→ c〈1!〉−−−→ {1! 7→ ∅} : ∗[c〈νa | 1!〉. 0 ]
c〈1!〉−−−→ c〈1!〉−−−→ etc .



Diagrams of Mobile Interactions
A decidable characterization

Decidability results

Finite systems

Let a transition system lts(π) = 〈Q,T 〉 with causal clock κQ of
each state Q, then there are static bounds for fresh names :⋃

Q
⋃

cod(κQ) ⊆ {1?, 2?, . . . , |B|?}
(where |B| is the number of “boxes” in the graph)⋃

Q dom(κQ) ⊆ {1!, 2!, . . . , |B|!}
(the proof for this is more involved)

=⇒ the sets Q and T are finite

=⇒ “The” theorem
Bisimilarity for π-graphs with causal clocks is decidable



Diagrams of Mobile Interactions
A decidable characterization

Decidability results

Finite systems

Let a transition system lts(π) = 〈Q,T 〉 with causal clock κQ of
each state Q, then there are static bounds for fresh names :⋃

Q
⋃

cod(κQ) ⊆ {1?, 2?, . . . , |B|?}
(where |B| is the number of “boxes” in the graph)⋃

Q dom(κQ) ⊆ {1!, 2!, . . . , |B|!}
(the proof for this is more involved)

=⇒ the sets Q and T are finite

=⇒ “The” theorem
Bisimilarity for π-graphs with causal clocks is decidable



Diagrams of Mobile Interactions
Translation to Petri nets

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Translation to Petri nets

Petri nets translations of the π-calculus

Motivations
A (Petri nets-based) verification framework “for free”
An exercise in expressivity
A study of the finite/infinite frontier

Semantic translations
1 Reachability analysis of a π-calculus term
2 Transition system encoded as a (generally low-level) Petri Net

Syntactic translations
1 Syntax-driven translation of a π-calculus term
2 Construction of a (generally high-level) Petri Net

Comparison : size of the translation, low/high level nets.



Diagrams of Mobile Interactions
Translation to Petri nets

Petri nets translations of the π-calculus

Motivations
A (Petri nets-based) verification framework “for free”
An exercise in expressivity
A study of the finite/infinite frontier

Semantic translations
1 Reachability analysis of a π-calculus term
2 Transition system encoded as a (generally low-level) Petri Net

Syntactic translations
1 Syntax-driven translation of a π-calculus term
2 Construction of a (generally high-level) Petri Net

Comparison : size of the translation, low/high level nets.



Diagrams of Mobile Interactions
Translation to Petri nets

Petri nets translations of the π-calculus

Motivations
A (Petri nets-based) verification framework “for free”
An exercise in expressivity
A study of the finite/infinite frontier

Semantic translations
1 Reachability analysis of a π-calculus term
2 Transition system encoded as a (generally low-level) Petri Net

Syntactic translations
1 Syntax-driven translation of a π-calculus term
2 Construction of a (generally high-level) Petri Net

Comparison : size of the translation, low/high level nets.



Diagrams of Mobile Interactions
Translation to Petri nets

Petri nets translations of the π-calculus

Motivations
A (Petri nets-based) verification framework “for free”
An exercise in expressivity
A study of the finite/infinite frontier

Semantic translations
1 Reachability analysis of a π-calculus term
2 Transition system encoded as a (generally low-level) Petri Net

Syntactic translations
1 Syntax-driven translation of a π-calculus term
2 Construction of a (generally high-level) Petri Net

Comparison : size of the translation, low/high level nets.



Diagrams of Mobile Interactions
Translation to Petri nets

Existing (recent) translations

Semantic translation by Meyer and Gorrieri
Translation of a π-calculus without match
Produces a Place/Transition net characterizing the
reduction semantics of the terms
Finite characterization of finite control processes (FCP)

Syntactic translation by Devillers, Klaudel and Koutny
Modular translation of a π-calculus with match
Construction of a high-level Petri net with read arcs
The net semantics correspond to the transition semantics
Infinite characterization of FCP

Goals
a simpler syntactic translation
a finite characterization of FCP



Diagrams of Mobile Interactions
Translation to Petri nets

Existing (recent) translations

Semantic translation by Meyer and Gorrieri
Translation of a π-calculus without match
Produces a Place/Transition net characterizing the
reduction semantics of the terms
Finite characterization of finite control processes (FCP)

Syntactic translation by Devillers, Klaudel and Koutny
Modular translation of a π-calculus with match
Construction of a high-level Petri net with read arcs
The net semantics correspond to the transition semantics
Infinite characterization of FCP

Goals
a simpler syntactic translation
a finite characterization of FCP



Diagrams of Mobile Interactions
Translation to Petri nets

Existing (recent) translations

Semantic translation by Meyer and Gorrieri
Translation of a π-calculus without match
Produces a Place/Transition net characterizing the
reduction semantics of the terms
Finite characterization of finite control processes (FCP)

Syntactic translation by Devillers, Klaudel and Koutny
Modular translation of a π-calculus with match
Construction of a high-level Petri net with read arcs
The net semantics correspond to the transition semantics
Infinite characterization of FCP

Goals
a simpler syntactic translation
a finite characterization of FCP



Diagrams of Mobile Interactions
Translation to Petri nets

Towards a (much) simpler syntactic translation

Remark : The π-graphs already provide a “token-game”
interpretation of π-calculus behaviors

Idea
Consider π-graphs as the result of the first step of a syntactic
translation ⇒ intermediate language

Second step :
⇒ Translating the π-graphs to (not so) high-level Petri nets

1 Inductive translation of a π-graph to a structure net
2 Connection of the structural net to a global context net



Diagrams of Mobile Interactions
Translation to Petri nets

Towards a (much) simpler syntactic translation

Remark : The π-graphs already provide a “token-game”
interpretation of π-calculus behaviors

Idea
Consider π-graphs as the result of the first step of a syntactic
translation ⇒ intermediate language

Second step :
⇒ Translating the π-graphs to (not so) high-level Petri nets

1 Inductive translation of a π-graph to a structure net
2 Connection of the structural net to a global context net



Diagrams of Mobile Interactions
Translation to Petri nets

Towards a (much) simpler syntactic translation

Remark : The π-graphs already provide a “token-game”
interpretation of π-calculus behaviors

Idea
Consider π-graphs as the result of the first step of a syntactic
translation ⇒ intermediate language

Second step :
⇒ Translating the π-graphs to (not so) high-level Petri nets

1 Inductive translation of a π-graph to a structure net
2 Connection of the structural net to a global context net



Diagrams of Mobile Interactions
Translation to Petri nets

The structure net

Principle : inductive decomposition
1 Translation of each prefix as an elementary Petri net with

prev/next transitions.
2 Fusion of prev/next transitions to form sequential compositions
3 Embedding of the translated process within an Iterator Petri

nets

⇒ each place of the structure (always) contains a single token
Control part of the token :

inactive : color ∅
active : color ◦

continuation : color •



Diagrams of Mobile Interactions
Translation to Petri nets

The structure net

Principle : inductive decomposition
1 Translation of each prefix as an elementary Petri net with

prev/next transitions.
2 Fusion of prev/next transitions to form sequential compositions
3 Embedding of the translated process within an Iterator Petri

nets

⇒ each place of the structure (always) contains a single token
Control part of the token :

inactive : color ∅
active : color ◦

continuation : color •



Diagrams of Mobile Interactions
Translation to Petri nets

Elementary structure nets (1)

Example 1 : translating an output a〈b〉

pred (∅, a, b)

{(∅, a, b), (o, a, b), (•, a, b)}

succ
(∅, a, b)/(o, a, b) (•, a, b)/(∅, a, b)

[out]

[sync]

[o-fresh]R/W

R/W

R/W



Diagrams of Mobile Interactions
Translation to Petri nets

Elementary structure nets (1)

Example 1 : translating an output a〈b〉

pred (∅, a, b)

{(∅, a, b), (o, a, b), (•, a, b)}

succ
(∅, a, b)/(o, a, b) (•, a, b)/(∅, a, b)

[out]

[sync]

[o-fresh]R/W

R/W

R/W



Diagrams of Mobile Interactions
Translation to Petri nets

Elementary structure nets (2)

Example 2 : translating a choice
∑

[P1 + . . .+ Pi + . . .+ Pn]

pred ∅ T (Pi )

T (P1)

T (Pk)

∅ succ
∅/◦

◦/
∅

◦/∅
◦/∅

∅/◦
∅/◦

∅/
◦

◦/∅



Diagrams of Mobile Interactions
Translation to Petri nets

Elementary structure nets (2)

Example 2 : translating a choice
∑

[P1 + . . .+ Pi + . . .+ Pn]

pred ∅ T (Pi )

T (P1)

T (Pk)

∅ succ
∅/◦

◦/
∅

◦/∅
◦/∅

∅/◦
∅/◦

∅/
◦

◦/∅



Diagrams of Mobile Interactions
Translation to Petri nets

Structure nets (3) : sequence and iteration

Example 3 : translating a sequence PQ

T (P) T (Q)pred succ

Example 4 : translating an iterator I : ∗P

I

{∅, I}

T (P) ∅

{∅, I}

[iter0]

I/∅ ∅/I

x/x ′x ′/x



Diagrams of Mobile Interactions
Translation to Petri nets

Structure nets (3) : sequence and iteration

Example 3 : translating a sequence PQ

T (P) T (Q)pred succ

Example 4 : translating an iterator I : ∗P

I

{∅, I}

T (P) ∅

{∅, I}

[iter0]

I/∅ ∅/I

x/x ′x ′/x



Diagrams of Mobile Interactions
Translation to Petri nets

Structure nets (3) : sequence and iteration

Example 3 : translating a sequence PQ

T (P) T (Q)pred succ

Example 4 : translating an iterator I : ∗P

I

{∅, I}

T (P) ∅

{∅, I}

[iter0]

I/∅ ∅/I

x/x ′x ′/x



Diagrams of Mobile Interactions
Translation to Petri nets

Structure nets (3) : sequence and iteration

Example 3 : translating a sequence PQ

T (P) T (Q)pred succ

Example 4 : translating an iterator I : ∗P

I

{∅, I}

T (P) ∅

{∅, I}

[iter0]

I/∅ ∅/I

x/x ′x ′/x



Diagrams of Mobile Interactions
Translation to Petri nets

The context net

Principles

Connect each transition [trans] (7 in total) to a global context :
a place with the name instantiations, clock and name partition
a place with the current observations attached to an obs
transition

Structure of the context net :

β, γ, κ

Γ

...

[silent]

[iter0]
(ε, ∅, ∅)

Ω

obs
R1/W1

R1/W1

R2/W2

R2/W2

R3/W3



Diagrams of Mobile Interactions
Translation to Petri nets

The context net

Principles

Connect each transition [trans] (7 in total) to a global context :
a place with the name instantiations, clock and name partition
a place with the current observations attached to an obs
transition

Structure of the context net :

β, γ, κ

Γ

...

[silent]

[iter0]
(ε, ∅, ∅)

Ω

obs
R1/W1

R1/W1

R2/W2

R2/W2

R3/W3



Diagrams of Mobile Interactions
Translation to Petri nets

Properties of the translation

Ongoing proofs
the size of the translated Petri Net is linear in the size of the
π-graphs
generates “one-token-everywhere” nets (stronger than 1-safe)
no dynamic resource creation : everything is pre-allocated (e.g.
size of the clock and the partition)
faithfulness : the π-graph and its translated Petri net
generate (by abstraction) the same LTS
Consequence : bisimilarity is decidable for the translated nets

Conjectures
the semantics (of both π-graphs and translated Petri nets) are
compositional
various equivalent firing strategies (e.g. standard vs.
synchronous)
well-structured low-level unfolding



Diagrams of Mobile Interactions
Translation to Petri nets

Properties of the translation

Ongoing proofs
the size of the translated Petri Net is linear in the size of the
π-graphs
generates “one-token-everywhere” nets (stronger than 1-safe)
no dynamic resource creation : everything is pre-allocated (e.g.
size of the clock and the partition)
faithfulness : the π-graph and its translated Petri net
generate (by abstraction) the same LTS
Consequence : bisimilarity is decidable for the translated nets

Conjectures
the semantics (of both π-graphs and translated Petri nets) are
compositional
various equivalent firing strategies (e.g. standard vs.
synchronous)
well-structured low-level unfolding



Diagrams of Mobile Interactions
Translation to Petri nets

About faithfulness

The design of the translation eases the faithfulness proof :

each abstracted transition Γ ` π α−→ π′ in the π-graphs
corresponds to an activation of the obs transition in the Petri
net.
the observation place Ω contains the label α
the token in the context place is Γ

Remark : we do not need to match the low-level transitions



Diagrams of Mobile Interactions
Translation to Petri nets

About faithfulness

The design of the translation eases the faithfulness proof :

each abstracted transition Γ ` π α−→ π′ in the π-graphs
corresponds to an activation of the obs transition in the Petri
net.
the observation place Ω contains the label α
the token in the context place is Γ

Remark : we do not need to match the low-level transitions



Diagrams of Mobile Interactions
Conclusion and future work

Plan

1 Preliminaries

2 Motivations

3 Introducing the (static) π-graphs

4 A decidable characterization

5 Translation to Petri nets

6 Conclusion and future work



Diagrams of Mobile Interactions
Conclusion and future work

Summary

A visual paradigm and a process calculus
Expressivity of the (finite-control) π-calculus : mobility, etc.
Ground transitions and bisimulations
⇒ standard techniques for verification
Decidable characterization (with causal clocks)

Ongoing works

Compositionality ? (conjecture : yes, but non-trivial proof)
Develop the meta-theory by abstract interpretation using a
(new) variant of the π-calculus
(+ encoding in the Coq proof assistant)
Translation to (high-level) Petri nets (“almost” done !)
From iterators to replicators (infinite control)
Application : ⇒ π explorer tool



Diagrams of Mobile Interactions
Conclusion and future work

Summary

A visual paradigm and a process calculus
Expressivity of the (finite-control) π-calculus : mobility, etc.
Ground transitions and bisimulations
⇒ standard techniques for verification
Decidable characterization (with causal clocks)

Ongoing works

Compositionality ? (conjecture : yes, but non-trivial proof)
Develop the meta-theory by abstract interpretation using a
(new) variant of the π-calculus
(+ encoding in the Coq proof assistant)
Translation to (high-level) Petri nets (“almost” done !)
From iterators to replicators (infinite control)
Application : ⇒ π explorer tool


	Preliminaries
	Motivations
	Introducing the (static) -graphs
	A decidable characterization
	Translation to Petri nets
	Conclusion and future work

