
Parallel Nested Depth-First
Searches for LTL Model Checking

Sami Evangelista Laure Petrucci Samir Youcef

LIPN — Université Paris 13

Vendredi 11 mars 2011
MeFoSyLoMa

1 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

2 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X ,∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X ,∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X , ∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X , ∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X , ∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The model checking approach

System

specification

Formal

model

∀x ∈ X ,
∑

i xi > 100

∀x ∈ X , ∃y ∈ X , y < x

∀i ,
∑

i xi ≥
∑

i yi

Logic

formulae

Model checker

Diagnosis

3 / 42

The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)

I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)

4 / 42

The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)
I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)

4 / 42

The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)
I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)

4 / 42

The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)
I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)

4 / 42

The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)
I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)

4 / 42

Synchronized graph — An example

0

1 2

3 4

an accepting state

an accepting cycle

I execution 0, 1, 2, 1, 2, . . .
invalidates the property

I an on-the-fly model checker can
report it without visiting 3 and 4

5 / 42

Synchronized graph — An example

0

1 2

3 4

an accepting state

an accepting cycle

I execution 0, 1, 2, 1, 2, . . .
invalidates the property

I an on-the-fly model checker can
report it without visiting 3 and 4

5 / 42

Synchronized graph — An example

0

1 2

3 4

an accepting state

an accepting cycle

I execution 0, 1, 2, 1, 2, . . .
invalidates the property

I an on-the-fly model checker can
report it without visiting 3 and 4

5 / 42

Synchronized graph — An example

0

1 2

3 4

an accepting state

an accepting cycle

I execution 0, 1, 2, 1, 2, . . .
invalidates the property

I an on-the-fly model checker can
report it without visiting 3 and 4

5 / 42

Synchronized graph — An example

0

1 2

3 4

an accepting state

an accepting cycle

I execution 0, 1, 2, 1, 2, . . .
invalidates the property

I an on-the-fly model checker can
report it without visiting 3 and 4

5 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

6 / 42

Sequential algorithms for LTL model checking

Nested Depth-First search (ndfs)

Memory Efficient Algorithms for the Verification of Temporal
Properties. CAV’1990. Courcoubetis, Vardi, Wolper and Yannakakis.

I Historical algorithm implemented by many model checkers, e.g., SPIN
I Principle: interleaving of two DFSs

I a blue DFS that finds accepting states and launchs in DFS post-order
I a red DFS that finds accepting cycles

Strongly connected component based (scc-ltl)

On-the-Fly Verification of Linear Temporal Logic.
FM’1999. Couvreur

Tarjan’s Algorithm Makes On-the-Fly LTL Verification More
Efficient. TACAS’2004. Geldenhuys and Valmari.

I Principle: adaptation of Tarjan’s algorithm for finding SCC

7 / 42

Sequential algorithms for LTL model checking

Nested Depth-First search (ndfs)

Memory Efficient Algorithms for the Verification of Temporal
Properties. CAV’1990. Courcoubetis, Vardi, Wolper and Yannakakis.

I Historical algorithm implemented by many model checkers, e.g., SPIN
I Principle: interleaving of two DFSs

I a blue DFS that finds accepting states and launchs in DFS post-order
I a red DFS that finds accepting cycles

Strongly connected component based (scc-ltl)

On-the-Fly Verification of Linear Temporal Logic.
FM’1999. Couvreur

Tarjan’s Algorithm Makes On-the-Fly LTL Verification More
Efficient. TACAS’2004. Geldenhuys and Valmari.

I Principle: adaptation of Tarjan’s algorithm for finding SCC

7 / 42

Comparison of NDFS and SCC-LTL

I linear complexities for both

I ndfs uses less memory: 2 bits / state vs. 1–2 integers for scc-ltl

I but scc-ltl usually reports counter-examples faster.

⇒ both have their strengths

Experimental comparison in :

A Note on On-the-Fly Verification Algorithms. TACAS’2005.
Schwoon and Esparza.

On-the-Fly Emptiness Checks for Generalized Bchi Automata.
SPIN’2005. Couvreur, Duret-Lutz and Poitrenaud.

Comparison of Algorithms for Checking Emptiness on Büchi
Automata. MEMICS’2009. Gaiser and Schwoon.

8 / 42

Parallel Algorithms for LTL Model Checking

I most algorithms are designed for distributed memory architectures

I but these can be easily adapted to shared memory architectures
I usually rely on a BFS because DFS is hard to parallelize:

Depth-First Search is Inherently Sequential. IPL’1985. Reif.

I characterized by different “on-the-flyness” levels:

0 off-line: first we build the synchronised graph then we check
1 early termination possible but not guaranteed in the presence of an

accepting cycle
2 on-the-fly: early termination guaranteed in the presence of an accepting

cycle

9 / 42

Multi-Core Algorithms for LTL Model Checking

Algo. Source Time Comp. Proc. Acceleration OTF

2-ndfs TSE’07 O(n + m) 1–2 average 2
map FMCAD’04 O(a2 ·m) 1–N excellent 1

owcty SPIN’03 O(h ·m) 1–N excellent 0
owcty-otf ICFEM’09 O(h · (m + n)) 1–N excelent 1

negc FSTTCS’01 O(n ·m) 1–N excellent 0
bledge ASE’03 O(m · (n + m)) 1–N excellent 0

bledge-otf ENTCS’05 O(m · (n + m)) 1–N excellent 2

mc-ndfs this talk O(p · (n + m)) 1–N average-good 2

I n, m = states and edges in the graph
I a = accepting states
I h = height of the graph
I p = working processes
I acceleration obtained through experimentations
I OTF = on-the-flyness

10 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

11 / 42

Principle of NDFS

I based on two DFSs

I a blue DFS is used to find all accepting states

I when it backtracks from an accepting state a the red DFS is initiated

I the red DFS tries to find a way back to a
a is called a seed state

I each state is explored at most twice (by the blue or red DFS)

I requires two bits per state to remember explored states

12 / 42

Pseudo-code of the algorithm

Main procedure

for each state s

s.blue := false

s.red := false

dfsBlue (initial state)

The blue DFS

dfsBlue (s)

s.blue := true

for (s’ in succ (s))

if (not s’.blue)

dfsBlue (s’)

if (s is accepting)

seed := s

dfsRed (s)

The red DFS

dfsRed (s)

s.red := true

for (s’ in succ (s))

if (s’ = seed)

print "Cycle Found"

else if (not s’.red)

dfsRed (s’)

13 / 42

Pseudo-code of the algorithm

Main procedure

for each state s

s.blue := false

s.red := false

dfsBlue (initial state)

The blue DFS

dfsBlue (s)

s.blue := true

for (s’ in succ (s))

if (not s’.blue)

dfsBlue (s’)

if (s is accepting)

seed := s

dfsRed (s)

The red DFS

dfsRed (s)

s.red := true

for (s’ in succ (s))

if (s’ = seed)

print "Cycle Found"

else if (not s’.red)

dfsRed (s’)

13 / 42

Pseudo-code of the algorithm

Main procedure

for each state s

s.blue := false

s.red := false

dfsBlue (initial state)

The blue DFS

dfsBlue (s)

s.blue := true

for (s’ in succ (s))

if (not s’.blue)

dfsBlue (s’)

if (s is accepting)

seed := s

dfsRed (s)

The red DFS

dfsRed (s)

s.red := true

for (s’ in succ (s))

if (s’ = seed)

print "Cycle Found"

else if (not s’.red)

dfsRed (s’)

13 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

start a red DFS with 3 as seed

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

the red DFS terminates ⇒
no accepting cycle around 3

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

start a red DFS with 1 as seed

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

14 / 42

NDFS — Example 1

0

1 2 3

4 5 6

we reach the seed ⇒
accepting cycle found

14 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

start a red DFS with 1 as seed

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

15 / 42

NDFS — Example 2

0

1 2 3

4 5 6

we reach the seed ⇒
accepting cycle found

15 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

16 / 42

Motivations

our goal: design an LTL model checking algorithm

I for multi-core architectures with shared memory

I that works on-the-fly

why?

I such architectures are now widely available
I and with

I all reduction techniques (partial order, symmetry, state compression)
I and the amount of RAM available

we can also face a time explosion problem

⇒ a multi-threaded algorithm can help us with that

our starting point: ndfs

17 / 42

Motivations

our goal: design an LTL model checking algorithm

I for multi-core architectures with shared memory

I that works on-the-fly

why?

I such architectures are now widely available
I and with

I all reduction techniques (partial order, symmetry, state compression)
I and the amount of RAM available

we can also face a time explosion problem

⇒ a multi-threaded algorithm can help us with that

our starting point: ndfs

17 / 42

Motivations

our goal: design an LTL model checking algorithm

I for multi-core architectures with shared memory

I that works on-the-fly

why?

I such architectures are now widely available
I and with

I all reduction techniques (partial order, symmetry, state compression)
I and the amount of RAM available

we can also face a time explosion problem

⇒ a multi-threaded algorithm can help us with that

our starting point: ndfs

17 / 42

Why is it difficult to parallelize ndfs?

a naive multi-threaded version of ndfs:

I threads are launched concurrently

I each thread performs the ndfs algorithm

I threads share all blue and red bits of ndfs

18 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

thread 1 starts a red
DFS with 1 as root

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

thread 2 starts a red
DFS with 4 as root

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

the red DFS of
thread 2 terminates
⇒ no accepting
cycle around 4

19 / 42

Why is it difficult to parallelize ndfs? — An example

0

1 2

3 4

the red DFS of
thread 1 terminates
⇒ no accepting
cycle around 1

19 / 42

Why is it difficult to parallelize ndfs?

I because the invokation order of the red DFS is important!
I basically if we have two accepting states a1 and a2 with

I a1 a2 ∧ ¬a2 a1

I a1 /∈ an accepting cycle and a2 ∈ an accepting cycle:

a1 a2

I then dfsRed(a1) must be invoked after dfsRed(a2)
I otherwise dfsRed(a1) will mark states around a2 as red
I and dfsRed(a2) will not discover the accepting cycle around a2

I we call this situation a conflict

I why does ndfs work? because the red DFS is nested in the blue DFS

⇒ dfsRed(a2) will be invoked before dfsRed(a1)

I but a naive multi-core ndfs does not preserve this order

20 / 42

Principle of MC-NDFS

I mc-ndfs = multi-core ndfs

I mc-ndfs spawns multiple threads that all execute (a modified) ndfs

I exploration based on 2 principles: randomisation and synchronisation

I randomisation: threads explore the graph in a random way so that they
(hopefully) engage in different parts of the graph

I synchronisation: shared memory is used to avoid as much as possible
redundant revisits by different threads

21 / 42

Resolution of conflicts

I mc-ndfs follows an optimistic approach to resolve conflicts:
I we let threads explore the graph without taking care of conflicts
I there is a way to detect when these conflicts occur
I in that case, a thread relaunchs a red DFS by only using local data
I why?

I because shared attributes modified by other threads have corrupted the
result of a red DFS launched

I using only local data we simulate ndfs and are thus on the safe side

I thus we have two layers algorithm
I a multi-core layer with inter-process synchronisation
I an emergency (without synchronisation) layer triggered in case of conflict

4 we avoid all synchronisations/waitings due to the prevention of conflicts

8 in case of conflicts, states will be revisited multiple times

22 / 42

How do we detect and fix conflicts?

I a conflict occurs when a red DFS initiated on a1 reaches a2 that is
I accepting
I but not red (⇒ the red DFS on a2 has necessarily not terminated)

I this situation possibly corresponds to a conflict:

a1 a2

I what do we do then? we mark a2 as dangerous

⇒ this means that the emergency level must be triggered for a2

I the red DFS that will be initiated on a2 does not report an accepting
cycle ⇒ relaunch a red DFS on a2 and ignore global red flags

23 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

thread 2 starts a red
DFS with 4 as seed

24 / 42

Example

0

1 2

3 4

24 / 42

Example

0

1 2

3 4

d

thread 2 reaches a non
red accepting state ⇒
mark 1 as dangerous

24 / 42

Example

0

1 2

3 4

d

24 / 42

Example

0

1 2

3 4

d

the red DFS of thread
2 terminates ⇒ no ac-
cepting cycle around 4

24 / 42

Example

0

1 2

3 4

d

24 / 42

Example

0

1 2

3 4

d

24 / 42

Example

0

1 2

3 4

thread 1 starts a red
DFS with 1 as seed

d

24 / 42

Example

0

1 2

3 4

red DFS terminated on
a dangerous state ⇒

thread 1 restarts a red
DFS and ignore red states

d

24 / 42

Example

0

1 2

3 4

d

24 / 42

Example

0

1 2

3 4

d

24 / 42

Example

0

1 2

3 4

thread 1 reaches the seed
⇒ accepting cycle found

d

24 / 42

Time complexity

I in the worst case, a thread will explore each state of the graph

I then mc-ndfs is equivalent to spawn p unsynchronised instances of ndfs

I and we do not gain anything through multi-threading
I “good” input graphs: graphs clustered in many small SCCs (or acyclic)

I with randomization threads visit different SCCs ⇒ no/few state revisits

I “bad” input graphs: graphs with a single SCC

⇒ lot of state revisits

25 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

26 / 42

Experimentation context

I prototype implementation in C on top of the pthread library

I algorithms exeperimented: mc-ndfs and map

I input models from the BEEM database:
http://anna.fi.muni.cz/models

I 163 graphs with more than 106 states
I 44 do not have an accepting cycle
I 119 do have one

I out of the 119 “positive” graphs the accepting cycle was trivial to found
I ndfs could report it after the visits of hundred states at most
⇒ using a multi-core algorithm did not make sense
I in 6 cases, an accepting cycle was hard to find and mc-ndfs could report it

much faster

⇒ next we only report experiments on “negative” graphs

27 / 42

http://anna.fi.muni.cz/models

A Brief Overview of MAP

I MAP assumes a total order relation >S on states
I map(s) is the Maximal Accepting Predecessor of s

I the biggest accepting state (w.r.t. >S) that is backward reachable from s

I map(s) can be computed in O(a · (n + m)) using a modified BFS

I trivially: map(s) = s ⇒ s is part of an accepting cycle

I but the converse is not true

I MAP will then relaunch the search after the deletion of some states
I algorithm stops when

I an accepting cycle is found
I or all accepting states have been deleted

I BFS is easy to distribute ⇒ MAP is suited for parallel architectures

28 / 42

A Brief Overview of MAP — An Example

Our input graph

0

1

2

3

4

5

6

7

MAP with 6>S2>S1

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

6

1

6

6

MAP with 2>S1>S6

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

2

1

2

2

0

1

2

3

4

5

6

7

⊥

⊥

⊥

⊥

6

⊥

6

6

delete 1 & 2

29 / 42

A Brief Overview of MAP — An Example

Our input graph

0

1

2

3

4

5

6

7

MAP with 6>S2>S1

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

6

1

6

6

MAP with 2>S1>S6

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

2

1

2

2

0

1

2

3

4

5

6

7

⊥

⊥

⊥

⊥

6

⊥

6

6

delete 1 & 2

29 / 42

A Brief Overview of MAP — An Example

Our input graph

0

1

2

3

4

5

6

7

MAP with 6>S2>S1

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

6

1

6

6

MAP with 2>S1>S6

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

2

1

2

2

0

1

2

3

4

5

6

7

⊥

⊥

⊥

⊥

6

⊥

6

6

delete 1 & 2

29 / 42

A Brief Overview of MAP — An Example

Our input graph

0

1

2

3

4

5

6

7

MAP with 6>S2>S1

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

6

1

6

6

MAP with 2>S1>S6

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

2

1

2

2

0

1

2

3

4

5

6

7

⊥

⊥

⊥

⊥

6

⊥

6

6

delete 1 & 2

29 / 42

Evaluation Methodology

I we considered the following performance criterion

max
t∈threads

(number of states explored by t)

I for several reasons:
I the graph explored was given explicitly (stored on disk)

I all time consuming operations (computing successors, serialising states)
were already done

I synchronisations dominate the whole exploration time

⇒ the time performance for both map and mc-ndfs were rather bad
I it is implementation independent
I it gives a better idea on the “theoretical” performance than time

I acceleration for N threads is measured as
performance for 1 thread

performance for N threads

30 / 42

Acceleration of MC-NDFS and MAP

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

mc-ndfs
map

I model: pgm protocol (pragmatic multicast protocol)
I property: every packet loss is followed by a negative ack
I graph size: 7,233,361 nodes

31 / 42

Acceleration of MC-NDFS and MAP

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

mc-ndfs
map

I model: leader filters (election protocol)
I property: a leader is eventually elected
I graph size: 26,302,351 nodes

32 / 42

Acceleration of MC-NDFS and MAP

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

mc-ndfs
map

I model: lup (shared memory model)
I property: processor 0 will eventually have access to RAM
I graph size: 34,425,340 nodes

33 / 42

Acceleration of MC-NDFS and MAP

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

mc-ndfs
map

I model: publish subscribe (Publish/subscribe notification protocol)
I property: ???
I graph size: 1,977,587 nodes

34 / 42

Acceleration of MC-NDFS and MAP
Conclusions

I mc-ndfs can clearly not compete with map on that point

I map: excellent accelerations in all situations
I mc-ndfs: the graph structure influences the acceleration

I pgm protocol and leader filters: many small SCCs
⇒ good acceleration

I lup and publish subscribe: one large SCC
⇒ redundant revisits by different threads

35 / 42

Absolute Performances of MC-NDFS and MAP

 0.1

 0.25

 0.5

 0.75

 1

 1.25

 1.5

b
o
p
d
p
.4

,
p
ro

p
.
4

re
th

er
.7

,
p
ro

p
.
2

b
o
p
d
p
.3

,
p
ro

p
.
3

b
o

p
d
p
.3

,
p
ro

p
.
1

sy
n
ap

se
.8

,
p
ro

p
.
3 sy
n
ap

se
.8

,
p
ro

p
.
2

p
g
m

-p
ro

to
co

l.
1
0
,
p
ro

p
.
4

el
ev

at
o
r.

4
,
p
ro

p
.
3

p
u
b
li

c-
su

b
sc

ri
b
e.

3
,
p
ro

p
.
1

an
d
er

so
n
.6

,
p
ro

p
.
4

an
d
er

so
n
.6

,
p
ro

p
.
2

p
g
m

-p
ro

to
co

l.
1
0
,
p
ro

p
.
3

m
cs

.3
,
p
ro

p
.
4

la
m

p
o
rt

.5
,
p
ro

p
.
4

li
ft

s.
9
,
p
ro

p
.
2

lu
p

.5
,
p
ro

p
.
2

p
et

er
so

n
.4

,
p
ro

p
.
4

le
ad

er
-f

il
te

rs
.7

,
p
ro

p
.
2

el
ev

at
o
r.

4
,
p
ro

p
.
2

el
ev

at
o
r2

.3
,
p
ro

p
.
4

sz
y
m

an
sk

i.
4

,
p
ro

p
.
4

le
ad

er
-e

le
ct

io
n
.6

,
p
ro

p
.
2

re
th

er
.8

,
p
ro

p
.
5

I data plotted: performance of map
performance of mc-ndfs for 16 working threads

I example: for graph bopdp.4, prop. 4, map is potentially 1.5 × faster

36 / 42

Absolute Performance of MC-NDFS and MAP
Conclusion

I we have seen that map clearly wins w.r.t. acceleration

I but it has a polynomial complexity in a2 · (n + m)

I so mc-ndfs is usually more efficient than map

I map is better than mc-ndfs when the graph has few/no accepting states

⇒ map is then equivalent to a parallel BFS

37 / 42

Overview

The LTL Model Checking Problem

State of the Art

A Closer Look at NDFS

MC-NDFS, an Algorithm for Multi-Core Architectures

Experimental Results

Conclusion and Perspectives

38 / 42

To sum up

I we have introduced mc-ndfs an LTL model checking algorithm for
multi-core computers

I mc-ndfs is an adaptation of the sequential ndfs algorithm
I its principle

I launch multiple threads executing a modified ndfs
I each thread visits the graph in a random way
I conflicts are not prevented but fixed a posteriori
I (main) modification to ndfs: relaunch a red DFS in a safe mode when a

conflict is detected

I perfomances largely depends on the graph structure

I but on some graphs we observed good accelerations

39 / 42

Perspectives

More experimentations

I with other kinds of models (e.g., Petri nets)

I comparison with other multi-core algorithms (e.g., bledge-otf)

Better implementation

I we observed good “theoretical” accelerations with our prototype

I but not necessarily reflected in the time performance

Combination of mc-ndfs with other reduction techniques

I partial order reduction

I state caching

40 / 42

Perspectives

More experimentations

I with other kinds of models (e.g., Petri nets)

I comparison with other multi-core algorithms (e.g., bledge-otf)

Better implementation

I we observed good “theoretical” accelerations with our prototype

I but not necessarily reflected in the time performance

Combination of mc-ndfs with other reduction techniques

I partial order reduction

I state caching

40 / 42

Perspectives

More experimentations

I with other kinds of models (e.g., Petri nets)

I comparison with other multi-core algorithms (e.g., bledge-otf)

Better implementation

I we observed good “theoretical” accelerations with our prototype

I but not necessarily reflected in the time performance

Combination of mc-ndfs with other reduction techniques

I partial order reduction

I state caching

40 / 42

Partial order reduction

I the representation of interleaving is a major source of state explosion

t u

Complete graph

t u

u t

Reduced graph

t u

u t

sufficient to execute t.u if we are looking for deadlock states
I idea: perform a selective search to build a reduced graph

1. perform a classical search, e.g., depth or breadth first
2. at each state s, compute a persistent set of actions P
3. only execute the actions of P and delay the execution of the others

41 / 42

The ignoring problem

Net Complete graph Reduced graph

let’s assume both graphs are equivalent with respect to a property Ψ

we have to ensure that mc-ndfs does not ignore transitions

42 / 42

The ignoring problem

Net Complete graph Reduced graph

t

the reduced graph is useless (only useful if Ψ = deadlock freeness)
all transitions but t are infinitely delayed

we have to ensure that mc-ndfs does not ignore transitions

42 / 42

The ignoring problem

Net Complete graph Reduced graph

t

the reduced graph is useless (only useful if Ψ = deadlock freeness)
all transitions but t are infinitely delayed

we have to ensure that mc-ndfs does not ignore transitions

42 / 42

	The LTL Model Checking Problem
	State of the Art
	A Closer Look at NDFS
	MC-NDFS, an Algorithm for Multi-Core Architectures
	Experimental Results
	Conclusion and Perspectives

