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The automata theoretic approach to LTL model checking

I formal model = directed graph S representing system’s dynamic

I logic formula = a property φ with temporal operators (e.g., until, next)

I the model checker

1. builds the Büchi automaton B¬φ of the negation of φ
2. builds the synchronized product G = S × B¬φ

3. checks for the emptiness of G
I Does G have a cycle going through an accepting state of B¬φ?

G is empty ⇔ no execution validates ¬φ and the property holds

I on-the-fly model checking ⇔ steps 2–3 are performed simultaneously

This talk
I an on-the-fly model checking algorithm (focussing on steps 2–3)

I for multi-core architectures with a shared memory

I adapted from classical nested depth-first search (used in SPIN)
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Sequential algorithms for LTL model checking

Nested Depth-First search (ndfs)

Memory Efficient Algorithms for the Verification of Temporal
Properties. CAV’1990. Courcoubetis, Vardi, Wolper and Yannakakis.

I Historical algorithm implemented by many model checkers, e.g., SPIN
I Principle: interleaving of two DFSs

I a blue DFS that finds accepting states and launchs in DFS post-order
I a red DFS that finds accepting cycles

Strongly connected component based (scc-ltl)

On-the-Fly Verification of Linear Temporal Logic.
FM’1999. Couvreur

Tarjan’s Algorithm Makes On-the-Fly LTL Verification More
Efficient. TACAS’2004. Geldenhuys and Valmari.

I Principle: adaptation of Tarjan’s algorithm for finding SCC
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Comparison of NDFS and SCC-LTL

I linear complexities for both

I ndfs uses less memory: 2 bits / state vs. 1–2 integers for scc-ltl

I but scc-ltl usually reports counter-examples faster.

⇒ both have their strengths

Experimental comparison in :

A Note on On-the-Fly Verification Algorithms. TACAS’2005.
Schwoon and Esparza.

On-the-Fly Emptiness Checks for Generalized Bchi Automata.
SPIN’2005. Couvreur, Duret-Lutz and Poitrenaud.

Comparison of Algorithms for Checking Emptiness on Büchi
Automata. MEMICS’2009. Gaiser and Schwoon.
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Parallel Algorithms for LTL Model Checking

I most algorithms are designed for distributed memory architectures

I but these can be easily adapted to shared memory architectures
I usually rely on a BFS because DFS is hard to parallelize:

Depth-First Search is Inherently Sequential. IPL’1985. Reif.

I characterized by different “on-the-flyness” levels:

0 off-line: first we build the synchronised graph then we check
1 early termination possible but not guaranteed in the presence of an

accepting cycle
2 on-the-fly: early termination guaranteed in the presence of an accepting

cycle
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Multi-Core Algorithms for LTL Model Checking

Algo. Source Time Comp. Proc. Acceleration OTF

2-ndfs TSE’07 O(n + m) 1–2 average 2
map FMCAD’04 O(a2 ·m) 1–N excellent 1

owcty SPIN’03 O(h ·m) 1–N excellent 0
owcty-otf ICFEM’09 O(h · (m + n)) 1–N excelent 1

negc FSTTCS’01 O(n ·m) 1–N excellent 0
bledge ASE’03 O(m · (n + m)) 1–N excellent 0

bledge-otf ENTCS’05 O(m · (n + m)) 1–N excellent 2

mc-ndfs this talk O(p · (n + m)) 1–N average-good 2

I n, m = states and edges in the graph
I a = accepting states
I h = height of the graph
I p = working processes
I acceleration obtained through experimentations
I OTF = on-the-flyness
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Principle of NDFS

I based on two DFSs

I a blue DFS is used to find all accepting states

I when it backtracks from an accepting state a the red DFS is initiated

I the red DFS tries to find a way back to a
a is called a seed state

I each state is explored at most twice (by the blue or red DFS)

I requires two bits per state to remember explored states
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Pseudo-code of the algorithm

Main procedure

for each state s

s.blue := false

s.red := false

dfsBlue (initial state)

The blue DFS

dfsBlue (s)

s.blue := true

for (s’ in succ (s))

if (not s’.blue)

dfsBlue (s’)

if (s is accepting)

seed := s

dfsRed (s)

The red DFS

dfsRed (s)

s.red := true

for (s’ in succ (s))

if (s’ = seed)

print "Cycle Found"

else if (not s’.red)

dfsRed (s’)
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NDFS — Example 1
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NDFS — Example 1
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Motivations

our goal: design an LTL model checking algorithm

I for multi-core architectures with shared memory

I that works on-the-fly

why?

I such architectures are now widely available
I and with

I all reduction techniques (partial order, symmetry, state compression)
I and the amount of RAM available

we can also face a time explosion problem

⇒ a multi-threaded algorithm can help us with that

our starting point: ndfs
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Why is it difficult to parallelize ndfs?

a naive multi-threaded version of ndfs:

I threads are launched concurrently

I each thread performs the ndfs algorithm

I threads share all blue and red bits of ndfs

18 / 42
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Why is it difficult to parallelize ndfs?

I because the invokation order of the red DFS is important!
I basically if we have two accepting states a1 and a2 with

I a1  a2 ∧ ¬a2  a1

I a1 /∈ an accepting cycle and a2 ∈ an accepting cycle:

a1 a2

I then dfsRed(a1) must be invoked after dfsRed(a2)
I otherwise dfsRed(a1) will mark states around a2 as red
I and dfsRed(a2) will not discover the accepting cycle around a2

I we call this situation a conflict

I why does ndfs work? because the red DFS is nested in the blue DFS

⇒ dfsRed(a2) will be invoked before dfsRed(a1)

I but a naive multi-core ndfs does not preserve this order

20 / 42



Principle of MC-NDFS

I mc-ndfs = multi-core ndfs

I mc-ndfs spawns multiple threads that all execute (a modified) ndfs

I exploration based on 2 principles: randomisation and synchronisation

I randomisation: threads explore the graph in a random way so that they
(hopefully) engage in different parts of the graph

I synchronisation: shared memory is used to avoid as much as possible
redundant revisits by different threads

21 / 42



Resolution of conflicts

I mc-ndfs follows an optimistic approach to resolve conflicts:
I we let threads explore the graph without taking care of conflicts
I there is a way to detect when these conflicts occur
I in that case, a thread relaunchs a red DFS by only using local data
I why?

I because shared attributes modified by other threads have corrupted the
result of a red DFS launched

I using only local data we simulate ndfs and are thus on the safe side

I thus we have two layers algorithm
I a multi-core layer with inter-process synchronisation
I an emergency (without synchronisation) layer triggered in case of conflict

4 we avoid all synchronisations/waitings due to the prevention of conflicts

8 in case of conflicts, states will be revisited multiple times
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How do we detect and fix conflicts?

I a conflict occurs when a red DFS initiated on a1 reaches a2 that is
I accepting
I but not red (⇒ the red DFS on a2 has necessarily not terminated)

I this situation possibly corresponds to a conflict:

a1 a2

I what do we do then? we mark a2 as dangerous

⇒ this means that the emergency level must be triggered for a2

I the red DFS that will be initiated on a2 does not report an accepting
cycle ⇒ relaunch a red DFS on a2 and ignore global red flags
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Example
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Time complexity

I in the worst case, a thread will explore each state of the graph

I then mc-ndfs is equivalent to spawn p unsynchronised instances of ndfs

I and we do not gain anything through multi-threading
I “good” input graphs: graphs clustered in many small SCCs (or acyclic)

I with randomization threads visit different SCCs ⇒ no/few state revisits

I “bad” input graphs: graphs with a single SCC

⇒ lot of state revisits
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Experimentation context

I prototype implementation in C on top of the pthread library

I algorithms exeperimented: mc-ndfs and map

I input models from the BEEM database:
http://anna.fi.muni.cz/models

I 163 graphs with more than 106 states
I 44 do not have an accepting cycle
I 119 do have one

I out of the 119 “positive” graphs the accepting cycle was trivial to found
I ndfs could report it after the visits of hundred states at most
⇒ using a multi-core algorithm did not make sense
I in 6 cases, an accepting cycle was hard to find and mc-ndfs could report it

much faster

⇒ next we only report experiments on “negative” graphs

27 / 42
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A Brief Overview of MAP

I MAP assumes a total order relation >S on states
I map(s) is the Maximal Accepting Predecessor of s

I the biggest accepting state (w.r.t. >S) that is backward reachable from s

I map(s) can be computed in O(a · (n + m)) using a modified BFS

I trivially: map(s) = s ⇒ s is part of an accepting cycle

I but the converse is not true

I MAP will then relaunch the search after the deletion of some states
I algorithm stops when

I an accepting cycle is found
I or all accepting states have been deleted

I BFS is easy to distribute ⇒ MAP is suited for parallel architectures
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A Brief Overview of MAP — An Example
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Evaluation Methodology

I we considered the following performance criterion

max
t∈threads

(number of states explored by t)

I for several reasons:
I the graph explored was given explicitly (stored on disk)

I all time consuming operations (computing successors, serialising states)
were already done

I synchronisations dominate the whole exploration time

⇒ the time performance for both map and mc-ndfs were rather bad
I it is implementation independent
I it gives a better idea on the “theoretical” performance than time

I acceleration for N threads is measured as
performance for 1 thread

performance for N threads
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Acceleration of MC-NDFS and MAP
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map

I model: pgm protocol (pragmatic multicast protocol)
I property: every packet loss is followed by a negative ack
I graph size: 7,233,361 nodes
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Acceleration of MC-NDFS and MAP
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map

I model: leader filters (election protocol)
I property: a leader is eventually elected
I graph size: 26,302,351 nodes
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Acceleration of MC-NDFS and MAP
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map

I model: lup (shared memory model)
I property: processor 0 will eventually have access to RAM
I graph size: 34,425,340 nodes
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Acceleration of MC-NDFS and MAP

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14  16

mc-ndfs
map

I model: publish subscribe (Publish/subscribe notification protocol)
I property: ???
I graph size: 1,977,587 nodes
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Acceleration of MC-NDFS and MAP
Conclusions

I mc-ndfs can clearly not compete with map on that point

I map: excellent accelerations in all situations
I mc-ndfs: the graph structure influences the acceleration

I pgm protocol and leader filters: many small SCCs
⇒ good acceleration

I lup and publish subscribe: one large SCC
⇒ redundant revisits by different threads
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Absolute Performances of MC-NDFS and MAP
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I data plotted: performance of map
performance of mc-ndfs for 16 working threads

I example: for graph bopdp.4, prop. 4, map is potentially 1.5 × faster
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Absolute Performance of MC-NDFS and MAP
Conclusion

I we have seen that map clearly wins w.r.t. acceleration

I but it has a polynomial complexity in a2 · (n + m)

I so mc-ndfs is usually more efficient than map

I map is better than mc-ndfs when the graph has few/no accepting states

⇒ map is then equivalent to a parallel BFS
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To sum up

I we have introduced mc-ndfs an LTL model checking algorithm for
multi-core computers

I mc-ndfs is an adaptation of the sequential ndfs algorithm
I its principle

I launch multiple threads executing a modified ndfs
I each thread visits the graph in a random way
I conflicts are not prevented but fixed a posteriori
I (main) modification to ndfs: relaunch a red DFS in a safe mode when a

conflict is detected

I perfomances largely depends on the graph structure

I but on some graphs we observed good accelerations
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Perspectives

More experimentations

I with other kinds of models (e.g., Petri nets)

I comparison with other multi-core algorithms (e.g., bledge-otf)

Better implementation

I we observed good “theoretical” accelerations with our prototype

I but not necessarily reflected in the time performance

Combination of mc-ndfs with other reduction techniques

I partial order reduction

I state caching
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Partial order reduction

I the representation of interleaving is a major source of state explosion

t u

Complete graph

t u

u t

Reduced graph

t u

u t

sufficient to execute t.u if we are looking for deadlock states
I idea: perform a selective search to build a reduced graph

1. perform a classical search, e.g., depth or breadth first
2. at each state s, compute a persistent set of actions P
3. only execute the actions of P and delay the execution of the others
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The ignoring problem

Net Complete graph Reduced graph

let’s assume both graphs are equivalent with respect to a property Ψ

we have to ensure that mc-ndfs does not ignore transitions

42 / 42



The ignoring problem

Net Complete graph Reduced graph

t

the reduced graph is useless (only useful if Ψ = deadlock freeness)
all transitions but t are infinitely delayed

we have to ensure that mc-ndfs does not ignore transitions

42 / 42



The ignoring problem

Net Complete graph Reduced graph

t

the reduced graph is useless (only useful if Ψ = deadlock freeness)
all transitions but t are infinitely delayed

we have to ensure that mc-ndfs does not ignore transitions

42 / 42


	The LTL Model Checking Problem
	State of the Art
	A Closer Look at NDFS
	MC-NDFS, an Algorithm for Multi-Core Architectures
	Experimental Results
	Conclusion and Perspectives

