
Efficient contextual unfolding

César Rodŕıguez

(joint work with Stefan Schwoon)

LSV, ENS Cachan

February 2011

Outline

Contextual nets

Defining the contextual unfolding

An unfolding technique

Efficient unfolding computation

Benchmarks

Conclusion

César Rodŕıguez (LSV) February 2011 2 / 22

Contextual nets

Contextual Nets

Definition
A contextual net is a tuple N = 〈P,T ,F ,C ,m0〉

I P: finite set of places

I T : finite set of transitions

I F ⊆ P × T ∪ T × P: flow relation

I C ⊆ P × T : context relation

I m0 ⊆ P: initial marking

Notation
•x for preset, x• for postset
t = {p ∈ P | (p, t) ∈ C } for context

Example

t2 = {p3}

p1

t2

p2

p4t3

p5

p3

t1

César Rodŕıguez (LSV) February 2011 3 / 22

Contextual nets

Encoding contextual nets

I We can encode a contextual net into a Petri net:

Contextual Plain Encoding Place Replication Encoding

César Rodŕıguez (LSV) February 2011 4 / 22

Defining the contextual unfolding

Contextual unfolding

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

UN
p2

p3

t3

t2

t1

N

p1

p4

César Rodŕıguez (LSV) February 2011 5 / 22

Defining the contextual unfolding

Contextual unfoldings exploit concurrency

A

t2t1

B

t2t1 t1 t2

t2t1

C

César Rodŕıguez (LSV) February 2011 6 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration

I History of an event

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Two events e, e ′ are in asymmetric conflict,

written e ↗ e ′, iff either:

1. e < e ′, or
2. e ∩ •e ′ 6= ∅, or
3. e 6= e ′ ∧ •e ∩ •e ′ 6= ∅

I Intuition: If both e and e ′ occur, then e occurs
first

I Configuration

I History of an event

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration

I A set of events C ⊆ T ′ is a configuration iff

1. e ∈ C and e ′ < e implies e ′ ∈ C (C is causally
closed), and

2. Relation ↗ ∩ C × C has no cycles

I Intuition: C is a configuration iff all its events can
be arranged to form a run.

I History of an event

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration
I History of an event

I A configuration H is a history for any e ∈ H iff
any run of all events in H fires e last.

I Example: e3 has two histories

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration
I History of an event

I A configuration H is a history for any e ∈ H iff
any run of all events in H fires e last.

I Example: e3 has two histories

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration
I History of an event

I A configuration H is a history for any e ∈ H iff
any run of all events in H fires e last.

I Example: e3 has two histories

I Configuration conflict #

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration

I History of an event
I Configuration conflict #

I Two configurations C1, C2 are in conflict, C1#C2,
iff there exist events e ∈ C2 \ C1 and e ′ ∈ C1 such
that e ↗ e ′ (or vice versa).

I Intuition: C1#C2 iff after firing C1, some event in
C2 \ C1 cannot fire, or vice versa.

I Cut

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration

I History of an event

I Configuration conflict #

I Cut
I For a configuration C , the Cut(C) is the marking

reached in UN when firing events in C
I Example: Cut({e1}) = {c1, c3}

I Marking

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Asymmetric conflict and configurations

I Asymmetric conflict ↗
I Configuration

I History of an event

I Configuration conflict #

I Cut
I Marking

I For a configuration C , we define
Marking(C) = fT (Cut(C)).

c1

c3

e3

c ′2

e ′1

c ′3

. . .

e2

c4

e ′2

c ′4

c2

e1

César Rodŕıguez (LSV) February 2011 7 / 22

Defining the contextual unfolding

Complete prefixes

I In general UN is infinite.

I A prefix PN of the full unfolding UN is the contextual net resulting
from applying the inductive rules above a finite number of times.

I Prefix PN is complete if it represents every reachable marking in N.

I Our goal: to (efficiently) compute a finite and complete prefix for N.

p

t

N

c ′

e ′

c ′′

c

e

. . .

UN

César Rodŕıguez (LSV) February 2011 8 / 22

Defining the contextual unfolding

Complete prefixes

I In general UN is infinite.

I A prefix PN of the full unfolding UN is the contextual net resulting
from applying the inductive rules above a finite number of times.

I Prefix PN is complete if it represents every reachable marking in N.

I Our goal: to (efficiently) compute a finite and complete prefix for N.

César Rodŕıguez (LSV) February 2011 8 / 22

Defining the contextual unfolding

Complete prefixes

I In general UN is infinite.

I A prefix PN of the full unfolding UN is the contextual net resulting
from applying the inductive rules above a finite number of times.

I Prefix PN is complete if it represents every reachable marking in N.

I Our goal: to (efficiently) compute a finite and complete prefix for N.

c1

c3 e2

c4

c2

e1

c1

c3

e3

c ′2

e2

c4

c2

e1

p4

p3

t1

t3

t2

p1
p2

N PN P ′N

César Rodŕıguez (LSV) February 2011 8 / 22

Defining the contextual unfolding

Complete prefixes

I In general UN is infinite.

I A prefix PN of the full unfolding UN is the contextual net resulting
from applying the inductive rules above a finite number of times.

I Prefix PN is complete if it represents every reachable marking in N.

I Our goal: to (efficiently) compute a finite and complete prefix for N.

c1

c3 e2

c4

c2

e1

c1

c3

e3

c ′2

e2

c4

c2

e1

p4

p3

t1

t3

t2

p1
p2

N PN P ′N

César Rodŕıguez (LSV) February 2011 8 / 22

An unfolding technique

Computing a complete prefix

We follow the abstract procedure proposed
by:

Baldan et al. McMillan’s complete prefix for
contextual nets. In Transactions of PNOMC,
p. 199-220, Berlin, 2008. Springer-Verlag.

c4

c3

c2

c ′2

c1

e2 {e1, e2}

c ′3

{e1} e1

e3
{e1, e3}

{e1, e2, e3}

e ′1
{e1, e3, e

′
1 }

{e1, e2, e3, e
′
1 }

César Rodŕıguez (LSV) February 2011 9 / 22

An unfolding technique

Computing a complete prefix

Definition
An enriched prefix EN = 〈PN , χ〉 is a prefix
PN of the full unfolding whose events e are
annotated by a set χ(e) of histories of e.

A pair (e,H) such that H is a history of e is
called enriched event.

Remark
This is our working data structure

c4

c3

c2

c ′2

c1

e2 {e1, e2}

c ′3

{e1} e1

e3
{e1, e3}

{e1, e2, e3}

e ′1
{e1, e3, e

′
1 }

{e1, e2, e3, e
′
1 }

César Rodŕıguez (LSV) February 2011 9 / 22

An unfolding technique

Computing a complete prefix

In a nutshell. . .

I Iterative construction procedure
I Works on enriched prefixes

1. Start with initial marking.
2. Extend enriched prefix with one

enriched event at a time.
3. Skip addition of cutoff enriched

events.

c4

c3

c2

c ′2

c1

e2 {e1, e2}

c ′3

{e1} e1

e3
{e1, e3}

{e1, e2, e3}

e ′1
{e1, e3, e

′
1 }

{e1, e2, e3, e
′
1 }

César Rodŕıguez (LSV) February 2011 9 / 22

Efficient unfolding computation

Challenging problems

I Data structure to store histories

I Efficient procedure to compute extensions to the prefix

César Rodŕıguez (LSV) February 2011 10 / 22

Efficient unfolding computation

Computing prefix extensions

The problem

Given EN and conditions c1, . . . , cn of EN , how to efficiently determine
whether c1, . . . cn are coverable

Let’s first review the problem for Petri nets. . .

Definition
Conditions c , c ′ are concurrent, c ‖ c ′, iff there exist a firing sequence
marking them both.

Proposition

Conditions c1, . . . cn are coverable iff ci ‖ cj holds for all i , j ∈ {1, . . . , n}

Remark
We can construct ‖ together with the unfolding.

César Rodŕıguez (LSV) February 2011 11 / 22

Efficient unfolding computation

However, for contextual unfolding. . .

. . . the same approach doesn’t work:

e2

c5

c2

e3

c6

c3

e1

c4

c1

We have c4 ‖ c5, and c4 ‖ c6 and c5 ‖ c6 but {c4, c5, c6} is not coverable.

What to do?

César Rodŕıguez (LSV) February 2011 12 / 22

Efficient unfolding computation

Enriched conditions

Definition
Let c be a condition.

I if •c = {e} and H is a history of e, then H is a generating history of c ;
if •c = ∅, then ∅ is.

I if e ∈ c and H is a history of e, then H is a reading history of c .
I A history of c is any

I generating or reading history of c ;
I union H1 ∪ H2 of non-conflicting histories of c .

We call (c ,H) an enriched condition.

Example

{e2} is a generating history for c5 and a reading history for c3.

César Rodŕıguez (LSV) February 2011 13 / 22

Efficient unfolding computation

A concurrency relation for contextual nets

Definition
Let ρ = (c ,H) and ρ ′ = (c ′,H ′) be two enriched conditions. We say that
ρ is concurrent to ρ ′, written ρ ‖ ρ ′, iff:

¬(H#H ′) and c , c ′ ∈ Cut(H ∪ H ′)

Property

Conditions c1, . . . , cn coverable iff there exist histories H1, . . . ,Hn verifying
(ci ,Hi) ‖ (cj ,Hj) for all 1 ≤ i < j ≤ n.

César Rodŕıguez (LSV) February 2011 14 / 22

Efficient unfolding computation

Composing histories

Let e be an event such that •e = {c1, . . . , ck } and e = {ck+1, . . . , cn}. Then
H is a history of e iff there exist arbitrary histories H1, . . . ,Hk for c1, . . . , ck
and generating histories Hk+1, . . . ,Hn for ck+1, . . . , cn such that:

I H = {e} ∪
⋃m

i=1 Hi , and

I (ci ,Hi) ‖ (cj ,Hj) for all 1 ≤ i < j ≤ n.

c1

. . .

ck

. . .

e

ck+1 cn

Remark
Provides a strategy for unfolding procedure: start with generating histories
for initial conditions; for every new enriched condition, use above theorem
to construct new event/condition histories.

César Rodŕıguez (LSV) February 2011 15 / 22

Efficient unfolding computation

Computing the concurrency relation

Let ρ = (c ,H) be a generating condition and let e be such that {e} = •c.
Let ρ1, . . . , ρn be the enriched conditions used to compose H. Then,

ρ ‖ ρ ′ ⇐⇒ (c ′ ∈ e• ∧ H = H ′)∨

(
c ′ /∈ •e ∧

n∧
i=1

(ρi ‖ ρ ′) ∧ •e ∩ H ′ ⊆ H

)

Remarks

I Reasonable efficiency
when implementing
•e ∩ H ′ ⊆ H

I Efficient detection of
coverable sets akin to
Petri net method.

(e,H)

.

(c,H)

(c1,H1) (ck ,Hk)

. . .

(ck+1,Hk+1) (cn,Hn)

. . .

César Rodŕıguez (LSV) February 2011 16 / 22

Efficient unfolding computation

History graph

Let EN be an enriched prefix of UN . The history graph HN for EN is a
node-labelled directed graph whose

I Nodes are enriched events (e,H) of EN .

I Edge (e,H) → (e ′,H ′) exists iff H ′ has been used to construct H.

Node (e,H) is labelled by e.

Remark
All required operations on histories can be implemented as simple
neighbourhood queries on HN .

César Rodŕıguez (LSV) February 2011 17 / 22

Benchmarks

Benchmarks

Benchmarks used: Corbett’s set of examples

I Standard benchmarks in unfolding literature

I Derived from concurrent finite automata, hence 1-safe

I Different characteristics, fairly sure to exhibit implementation flaws

I Not specifically geared towards contextual nets

César Rodŕıguez (LSV) February 2011 18 / 22

Benchmarks

Experiments I: Mole vs Cunf

events Mole Cunf
bds 1 12900 0.47 0.52
buf100 5051 2.85 2.10
byzagr4 14724 3.04 3.40
dpd 7 10457 0.93 0.87
dph 7 37272 0.79 0.99
elevator 4 16856 2.00 2.01
fifo20 41792 4.89 4.14
ftp 1 83889 76.02 77.09
furnace 3 25394 1.22 1.10
key 4 67954 1.80 2.18
q 1.sync 10722 1.36 1.22
rw 12.sync 98361 2.89 3.98
rw 1w3r 15401 0.30 0.39
rw 2w1r 9241 0.23 0.29

Mole is an (efficient) unfolder for
Petri nets.

Cunf is the new contextual unfolder.

We run both tools on the original
Petri nets (no read arcs!) ⇒ results
are the same

Times given in seconds.

Conclusion: implementation of Cunf
is reasonably efficient (factors 0.7 to
1.4 w.r.t. Mole)

Conclusion: histories handled effort-
lessly

César Rodŕıguez (LSV) February 2011 19 / 22

Benchmarks

Experiments II: Plain vs contextual

events Plain Cont. enr. ev.
bds 1 12900 0.52 0.16 4032
buf100 5051 2.10 2.17 5051
byzagr4 14724 3.40 2.59 8044
dpd 7 10457 0.87 0.94 10457
dph 7 37272 0.99 0.99 37272
elevator 4 16856 2.01 1.30 16856
fifo20 41792 4.14 4.14 41792
ftp 1 83889 77.09 34.60 50928
furnace 3 25394 1.10 0.62 16893
key 4 67954 2.18 9.35 21742
q 1.sync 10722 1.22 1.20 10722
rw 12.sync 98361 3.98 3.14 98361
rw 1w3r 15401 0.39 0.43 14982
rw 2w1r 9241 0.29 0.36 9241

Contextual nets obtained by
converting read/write loops
to read arcs.

Cunf used on both tools.

3 examples w/o read arcs (in
italics).

Some savings on time and
size (not always on both).

Inefficiency detected in key 4
example, we are working on
fixing it.

César Rodŕıguez (LSV) February 2011 20 / 22

Benchmarks

Experiments III: Contextual vs PR-encoding

Context. PR-enc.
bds 1 0.16 0.27
buf100 2.17 2.16
byzagr4 2.59 5.30
dpd 7 0.94 0.98
dph 7 0.99 1.00
elevator 4 1.30 557.06
fifo20 4.14 4.12
ftp 1 34.60 113.71
furnace 3 0.62 0.96
key 4 9.35 4.28
q 1.sync 1.20 2.18
rw 12.sync 3.14 7.66
rw 1w3r 0.43 0.70
rw 2w1r 0.36 8.86

PR-encoding obtained from contextual
nets.

Cunf used on both tools.

nr. histories in contextual = nr. events
in PR

Nonetheless, contextual is consistently
better (except key 4, for now).

Explanation: combinatorial problems in
PR due to larger transition presets.

César Rodŕıguez (LSV) February 2011 21 / 22

Conclusion

Conclusions and future work

I Contextual unfolding feasible and efficient

I Beats PR-encoding

I Work in progress, further ideas for optimization

I Will look at more extensive benchmarks

I To do: look at the applications in verification, diagnosis, etc.

César Rodŕıguez (LSV) February 2011 22 / 22

	Contextual nets
	Defining the contextual unfolding
	An unfolding technique
	Efficient unfolding computation
	Benchmarks
	Conclusion

