Efficient contextual unfolding

César Rodríguez

(joint work with Stefan Schwoon)

LSV, ENS Cachan

February 2011

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Contextual nets

Defining the contextual unfolding

An unfolding technique

Efficient unfolding computation

Benchmarks

Conclusion

César Rodríguez (LSV)

February 2011 2 / 22

Contextual nets

Contextual Nets

Definition

A contextual net is a tuple $N = \langle P, T, F, C, m_0 \rangle$

- ▶ *P*: finite set of *places*
- ► T: finite set of *transitions*
- $F \subseteq P \times T \cup T \times P$: flow relation
- $C \subseteq P \times T$: context relation
- $m_0 \subseteq P$: initial marking

Notation

•*x* for preset, x^{\bullet} for postset $\underline{t} = \{ p \in P \mid (p, t) \in C \}$ for context

Example

 $\underline{t_2} = \{p_3\}$

< ロト < 同ト < ヨト < ヨト

Contextual nets

Encoding contextual nets

▶ We can encode a contextual net into a Petri net:

February 2011 4 / 22

Contextual unfolding

▲□▶ ▲圖▶ ▲ 圖▶

César Rodríguez (LSV)

э February 2011 5 / 22

э.

Contextual unfoldings exploit concurrency

イロト イヨト イヨト イ

Asymmetric conflict and configurations

César Rodríguez (LSV)

Asymmetric conflict and configurations

- ► Asymmetric conflict >>
 - ► Two events e, e' are in asymmetric conflict, written e > e', iff either:
 - 1. e < e', or 2. $\underline{e} \cap {}^{\bullet}e' \neq \emptyset$, or
 - 3. $e \neq e' \wedge {}^{\bullet}e \cap {}^{\bullet}e' \neq \emptyset$
 - Intuition: If both e and e' occur, then e occurs first

February 2011 7 / 22

(日) (同) (日) (日)

Asymmetric conflict and configurations

- ► Asymmetric conflict
- Configuration
 - A set of events $C \subseteq T'$ is a configuration iff
 - 1. $e \in C$ and e' < e implies $e' \in C$ (C is causally closed), and
 - 2. Relation $\nearrow \cap C \times C$ has no cycles
 - Intuition: C is a configuration iff all its events can be arranged to form a run.

February 2011 7 / 22

< ロ > < 同 > < 回 > < 回 > < 回

Asymmetric conflict and configurations

- ► Asymmetric conflict >>
- Configuration
- History of an event
 - A configuration H is a history for any e ∈ H iff any run of all events in H fires e last.
 - Example: e₃ has two histories

Image: A match a ma

Asymmetric conflict and configurations

- ► Asymmetric conflict
- Configuration
- History of an event
 - A configuration H is a history for any e ∈ H iff any run of all events in H fires e last.
 - Example: e₃ has two histories

February 2011 7 / 22

Image: A match a ma

Asymmetric conflict and configurations

- ► Asymmetric conflict
- Configuration
- History of an event
 - A configuration H is a history for any e ∈ H iff any run of all events in H fires e last.
 - Example: e₃ has two histories

Image: A match a ma

Asymmetric conflict and configurations

- ► Asymmetric conflict
- Configuration
- History of an event
- Configuration conflict #
 - ▶ Two configurations C_1 , C_2 are in conflict, $C_1 # C_2$, iff there exist events $e \in C_2 \setminus C_1$ and $e' \in C_1$ such that $e \nearrow e'$ (or vice versa).
 - ▶ Intuition: $C_1 \# C_2$ iff after firing C_1 , some event in $C_2 \setminus C_1$ cannot fire, or vice versa.

February 2011 7 / 22

(日) (同) (日) (日)

Asymmetric conflict and configurations

- ► Asymmetric conflict >>
- Configuration
- History of an event
- ► Configuration conflict #
- Cut
 - ► For a configuration C, the Cut(C) is the marking reached in U_N when firing events in C
 - Example: $Cut(\{e_1\}) = \{c_1, c_3\}$

César Rodríguez (LSV)

February 2011 7 / 22

• • • • • • • • • • • •

Asymmetric conflict and configurations

- ► Asymmetric conflict
- Configuration
- History of an event
- ► Configuration conflict #
- Cut
- Marking
 - For a configuration C, we define Marking(C) = f_T(Cut(C)).

▶ < ≣ ▶ ≣ ∽ ९. February 2011 7 / 22

• • • • • • • • • • • •

Complete prefixes

▶ In general U_N is infinite.

César Rodríguez (LSV)

■ * * ■ * ■ のへで February 2011 8 / 22

イロト イヨト イヨト イヨト

Complete prefixes

- In general \mathcal{U}_N is infinite.
- ► A prefix P_N of the full unfolding U_N is the contextual net resulting from applying the inductive rules above a finite number of times.

< ロ > < 同 > < 回 > < 回 > < 回

Complete prefixes

- In general \mathcal{U}_N is infinite.
- ► A prefix P_N of the full unfolding U_N is the contextual net resulting from applying the inductive rules above a finite number of times.
- Prefix \mathcal{P}_N is complete if it represents every reachable marking in N.

Complete prefixes

- In general \mathcal{U}_N is infinite.
- ► A prefix P_N of the full unfolding U_N is the contextual net resulting from applying the inductive rules above a finite number of times.
- Prefix \mathcal{P}_N is complete if it represents every reachable marking in N.

An unfolding technique

Computing a complete prefix

We follow the abstract procedure proposed by:

Baldan et al. McMillan's complete prefix for contextual nets. In *Transactions of PNOMC*, p. 199-220, Berlin, 2008. Springer-Verlag.

Image: A math a math

An unfolding technique

Computing a complete prefix

Definition

An enriched prefix $\mathcal{E}_N = \langle \mathcal{P}_N, \chi \rangle$ is a prefix \mathcal{P}_N of the full unfolding whose events *e* are annotated by a set $\chi(e)$ of histories of *e*.

A pair (e, H) such that H is a history of e is called enriched event.

Remark

This is our working data structure

< ロト < 同ト < ヨト < ヨ

February 2011 9 / 22

An unfolding technique

Computing a complete prefix

In a nutshell...

- Iterative construction procedure
- Works on enriched prefixes
 - 1. Start with initial marking.
 - 2. Extend enriched prefix with one enriched event at a time.
 - 3. Skip addition of cutoff enriched events.

Image: A match a ma

February 2011 9 / 22

Challenging problems

- Data structure to store histories
- Efficient procedure to compute extensions to the prefix

César Rodríguez (LSV)

February 2011 10 / 22

Computing prefix extensions

The problem

Given \mathcal{E}_N and conditions c_1, \ldots, c_n of \mathcal{E}_N , how to efficiently determine whether c_1, \ldots, c_n are coverable

Let's first review the problem for Petri nets...

Definition

Conditions c, c' are concurrent, $c \parallel c'$, iff there exist a firing sequence marking them both.

Proposition

Conditions $c_1, \ldots c_n$ are coverable iff $c_i \parallel c_j$ holds for all $i, j \in \{1, \ldots, n\}$

Remark

We can construct || together with the unfolding.

César Rodríguez (LSV)

February 2011 11 / 22

イロト 不得 トイヨト イヨト ヨー ろくつ

However, for contextual unfolding...

... the same approach doesn't work:

We have $c_4 \parallel c_5$, and $c_4 \parallel c_6$ and $c_5 \parallel c_6$ but $\{c_4, c_5, c_6\}$ is not coverable.

What to do?

César Rodríguez (LSV)

February 2011 12 / 22

- 20

• • • • • • • • • • • •

Enriched conditions

Definition

Let c be a condition.

- If •c = {e} and H is a history of e, then H is a generating history of c; if •c = Ø, then Ø is.
- if $e \in \underline{c}$ and H is a history of e, then H is a reading history of c.
- A history of c is any
 - generating or reading history of c;
 - union $H_1 \cup H_2$ of non-conflicting histories of c.

We call (c, H) an enriched condition.

Example

 $\{e_2\}$ is a generating history for c_5 and a reading history for c_3 .

César Rodríguez (LSV)

February 2011 13 / 22

A concurrency relation for contextual nets

Definition

Let $\rho = (c, H)$ and $\rho' = (c', H')$ be two enriched conditions. We say that ρ is concurrent to ρ' , written $\rho \parallel \rho'$, iff:

$$\neg(H \# H')$$
 and $c, c' \in Cut(H \cup H')$

Property

Conditions c_1, \ldots, c_n coverable iff there exist histories H_1, \ldots, H_n verifying $(c_i, H_i) \parallel (c_j, H_j)$ for all $1 \le i < j \le n$.

César Rodríguez (LSV)

February 2011 14 / 22

Composing histories

Let *e* be an event such that $\bullet e = \{c_1, \ldots, c_k\}$ and $\underline{e} = \{c_{k+1}, \ldots, c_n\}$. Then *H* is a history of *e* iff there exist *arbitrary* histories H_1, \ldots, H_k for c_1, \ldots, c_k and *generating* histories H_{k+1}, \ldots, H_n for c_{k+1}, \ldots, c_n such that:

- $H = \{e\} \cup \bigcup_{i=1}^m H_i$, and
- $(c_i, H_i) \parallel (c_j, H_j)$ for all $1 \le i < j \le n$.

Remark

Provides a strategy for unfolding procedure: start with generating histories for initial conditions; for every new enriched condition, use above theorem to construct new event/condition histories.

César Rodríguez (LSV)

Computing the concurrency relation

Let $\rho = (c, H)$ be a generating condition and let e be such that $\{e\} = {}^{\bullet}c$. Let ρ_1, \ldots, ρ_n be the enriched conditions used to compose H. Then,

$$\rho \parallel \rho' \iff (c' \in e^{\bullet} \land H = H') \lor \left(c' \notin e^{\bullet} \land \bigwedge_{i=1}^{n} (\rho_i \parallel \rho') \land \underline{\bullet} e \cap H' \subseteq H\right)$$

Remarks

- Reasonable efficiency when implementing <u>•e</u> ∩ H' ⊆ H
- Efficient detection of coverable sets akin to Petri net method.

César Rodríguez (LSV)

History graph

Let \mathcal{E}_N be an enriched prefix of \mathcal{U}_N . The history graph \mathcal{H}_N for \mathcal{E}_N is a node-labelled directed graph whose

- Nodes are enriched events (e, H) of \mathcal{E}_N .
- Edge $(e, H) \rightarrow (e', H')$ exists iff H' has been used to construct H.

Node (e, H) is labelled by e.

Remark

All required operations on histories can be implemented as simple neighbourhood queries on \mathcal{H}_N .

(ロ) (型) (注) (モ) (モ) (モ) (の)

Benchmarks used: Corbett's set of examples

- Standard benchmarks in unfolding literature
- Derived from concurrent finite automata, hence 1-safe
- Different characteristics, fairly sure to exhibit implementation flaws
- Not specifically geared towards contextual nets

イロト イポト イヨト イヨト 二日

Experiments I: Mole vs Cunf

	events	Mole	Cunf
bds_1	12900	0.47	0.52
buf100	5051	2.85	2.10
byzagr4	14724	3.04	3.40
dpd_7	10457	0.93	0.87
dph_7	37272	0.79	0.99
elevator_4	16856	2.00	2.01
fifo20	41792	4.89	4.14
ftp_1	83889	76.02	77.09
furnace_3	25394	1.22	1.10
key_4	67954	1.80	2.18
$q_1.sync$	10722	1.36	1.22
rw_12.sync	98361	2.89	3.98
rw_1w3r	15401	0.30	0.39
rw_2w1r	9241	0.23	0.29

Mole is an (efficient) unfolder for Petri nets.

Cunf is the new contextual unfolder.

We run both tools on the original Petri nets (no read arcs!) \Rightarrow results are the same

Times given in seconds.

Conclusion: implementation of Cunf is reasonably efficient (factors 0.7 to 1.4 w.r.t. Mole)

Conclusion: histories handled effort-lessly

February 2011 19 / 22

Experiments II: Plain vs contextual

	events	Plain	Cont.	enr. ev.	Contextual nets obtained by
bds_1	12900	0.52	0.16	4032	converting read/write loops
buf100	5051	2.10	2.17	5051	to read arcs.
byzagr4	14724	3.40	2.59	8044	
dpd_7	10457	0.87	0.94	10457	Cunf used on both tools.
dph_7	37272	0.99	0.99	37272	
elevator_4	16856	2.01	1.30	16856	3 examples w/o read arcs (in
fifo20	41792	4.14	4.14	41792	italics).
ftp_1	83889	77.09	34.60	50928	
furnace_3	25394	1.10	0.62	16893	Some savings on time and
key_4	67954	2.18	9.35	21742	size (not always on both).
$q_1.sync$	10722	1.22	1.20	10722	
rw_12.sync	98361	3.98	3.14	98361	Inefficiency detected in key_4
rw_1w3r	15401	0.39	0.43	14982	example, we are working on
rw_2w1r	9241	0.29	0.36	9241	fixing it.

Experiments III: Contextual vs PR-encoding

	Context.	PR-enc.	
bds_1	0.16	0.27	PR-encoding obtained from contextual
buf100	2.17	2.16	nets.
byzagr4	2.59	5.30	
dpd_7	0.94	0.98	Cunf used on both tools.
dph_7	0.99	1.00	
elevator_4	1.30	557.06	nr. histories in contextual = nr. events
fifo20	4.14	4.12	in PR
ftp_1	34.60	113.71	
furnace_3	0.62	0.96	Nonetheless, contextual is consistently
key_4	9.35	4.28	better (except key_4, for now).
$q_1.sync$	1.20	2.18	
rw_12.sync	3.14	7.66	Explanation: combinatorial problems in
rw_1w3r	0.43	0.70	PR due to larger transition presets.
rw_2w1r	0.36	8.86	

Conclusions and future work

- Contextual unfolding feasible and efficient
- Beats PR-encoding
- ► Work in progress, further ideas for optimization
- Will look at more extensive benchmarks
- ▶ To do: look at the applications in verification, diagnosis, etc.

イロト 不得下 イヨト イヨト 二日