Paris, September 2011 - MeFoSyLoMa

Petri Net Distributability

Eike Best and Philippe Darondeau

Carl von Ossietzky Universitat Oldenburg, D-26111 Oldenburg, Germany

INRIA Rennes Bretagne-Atlantique, campus de Beaulieu, F-35042 Rennes Cedex

Paris, September 2011

Paris, September 2011 - MeFoSyLoMa

Purpose of the talk

Hightlight some important open problems
that have (in our opinion) been slightly neglected
by the Petri net / process algebra communities.

Main concern: how can a Petri net (or, for that matter,
a concurrent system described by other means) be
distributed.

Paris, September 2011 - MeFoSyLoMa

Setting the scene 1: nondeterministic choice

S
a+b(CCS) or ab(COSY) or o (Petri nets)
i‘ ’i

Can a and b be on different locations A and B?

Information about the start of executing a must travel in time 0
from A to B. Otherwise there is some small lapse of time during
which a has started to occur and b can start to occur.

Hence our answer is no.

Transitions a and b must be on the same location,
which is also the location of s.

Paris, September 2011 - MeFoSyLoMa

Setting the scene 2: handshake synchronisation
ala(CCS) or alja(COSY) or r Q\D/®S (Petri nets)
a

Canr and s be on different locations R and S?

r S
Not if the context involves nondeterminism, as in ﬁ@\[]?\[]

b a C

By the previous argument, b, a, ¢ and also r, s must be on the
same location.

In general, r, s might be on different locations.

Hence our answer is:

Paris, September 2011 - MeFoSyLoMa

Setting the scene 3: informal problem statement

Given the above constraints,
and given a system with a desired localisation,

is it actually possible to realise the system distributedly?

Paris, September 2011 - MeFoSyLoMa

Structure of the talk

More background

Transition systems and Petri nets with locations (“colours”)

Implementing a located transition system by a Petri net
Towards a systematic approach

Special cases

Open problems and outlook.

Paris, September 2011 - MeFoSyLoMa

Using 7-labelled transitions in a Petri net

T-transitions contribute nothing to the language of a net.

Simulation of a Petri net by a free-choice Petri net:

O - or@";»l

(In

However:
Transformation (I) may intruduce new deadlocks.

Transformation (II) may introduce busy waiting
(also known as divergence).

Paris, September 2011 - MeFoSyLoMa

Handshake synchronisation in Hoare’s original CSP

NV | e X

Process ¢; (sender) Process ¢, (receiver) O O

Sending the value v is simultaneous with receiving it in X,
having the effect of an assignment x:=v.

An obvious Petri net translation creates
a two-input / two-output transition labelled by x:=v.
¢ Can the handshake be implemented if ¢c; and ¢, are on
different locations?
e Where to put the assignment x:=v, on ¢, or on c,?

Paris, September 2011 - MeFoSyLoMa

Trying to distribute the handshake

Consider (a+cplv) || (c17x +b)

Process ¢, Process ¢,
no good
@/Q\ D\O\Df\@ (deadlock)
X:=V
N———
C1 C2

M /Q\ no good, either
—O—_ (divergence)

C1 %]

Paris, September 2011 - MeFoSyLoMa

Distributability in concurrent programming languages

It is apparently impossible, in general, to distribute
handshake-based CSP.

The same is true for our Petri-net based language B(PN)?
where bounded buffers of length n > 0 were introduced.

A buffer of length n = 0 corresponds to a handshake
synchronisation.

Bounded buffers of length > 0 are distributable and can be
implemented by a series of handshakes.

But there is no direct converse implementation.

Paris, September 2011 - MeFoSyLoMa

How can a series of handshakes be distributed...

...but not a single handshake?
Buffers are deterministic.

In the presence of choices, buffers of length 0
and buffers of length > 0 behave differently.

handshake (0-bounded buffer): 1-bounded buffer:

A %

no distribution possible site A site B

Paris, September 2011 - MeFoSyLoMa

How can a series of handshakes be distributed...

...but not a single handshake?
Buffers are deterministic.

In the presence of choices, buffers of length 0
and buffers of length > 0 behave differently.

handshake (0-bounded buffer): 1-bounded buffer:

i i

N——
no distribution possible site A site B

Paris, September 2011 - MeFoSyLoMa

Distributedness definition: Hopkins

1990-91: Richard Hopkins and | discussed implementing
handshakes in a distributed environment without introducing
undesirable divergences in the context of B(PN)2.

We identified some situations in which the busy waiting can be
avoided, by restricting the contexts.

Richard Hopkins wrote a paper which contains a classification
of such contexts, along with a definition of distributability.

Such a definition was necessary in order to show formally that
in certain restrictive circumstances, busy waiting is avoidable.

Paris, September 2011 - MeFoSyLoMa

Distributedness definition: Caillaud

Hopkins’ definition was simplified by Benoit Caillaud (2003).

S t
The basic idea is to require for O—~0
that t necessarily resides at the same location as s.

t S
By contrast, in cases such as D*Q,
s and t may well be on different locations.

This corresponds to the observations that
e prolonging arcs from places to transitions introduces either
deadlock or divergence,
e prolonging arcs from transitions to places do not create
any new deadlocks, nor any new divergences.

O—O ~ [(HO—-0-0

Paris, September 2011 - MeFoSyLoMa

Arbitration

Note: Informally, arbitration means resolving nondeterministic
choices (by some device called arbiter).

Quotes from Leslie Lamport’s 2003 paper on Arbiter-free
Synchronization:

“The impossibility of implementing arbitration in a bounded
length of time seems to be a fundamental law of nature.

Hence, what kind of synchronization can be achieved without
arbitration should be a fundamental question in any theory of
multiprocess synchronization.

We know of no previous attempt to answer this question.

Not coincidentally, we know of no practical benefits that might
come from answering it.

Nevertheless, we consider it to be an interesting question in its
own right.”

Paris, September 2011 - MeFoSyLoMa

A possible link between distribution and arbitration

If we could implement arbitration in a bounded length of time,
then we ought to be able to distribute the handshake without
busy waiting.

Consequently, every class of arbiter-free synchronization
primitives should lead to distributable systems.

Two of the classes of systems shown by Lamport to be
arbiter-free are also distributable.

Paris, September 2011 - MeFoSyLoMa

Coloured transition systems

Let COLOURS be some set of colours, denoting locations.
A coloured transition system is a 5-tuple
TS = (Q,A, —,sp,col):

e Q is the set of states,

e Ais the set of labels,

e —»C Q x A x Q is the transition relation,

e Sg is the initial state,

e col is a colouring function col: A — COLOURS.

TS is deterministic if s = s; and s > s, entail s; = s5.

B fio I

Paris, September 2011 - MeFoSyLoMa

Coloured Petri nets

A coloured Petri netis a 5-tuple N = (S, T, F, Mg, col):
e S is a set of places,

T is a set of transitions,

F is the flow function F: ((S x T)U(T x S)) — N,
Mg is the initial marking,

col is a colouring function col: T — COLOURS.

ED dh b

Paris, September 2011 - MeFoSyLoMa

From Petri nets to transition systems, and back

e The reachability graph RG(N) of a net N is a deterministic
transition system with label set A = T, and the colouring
function of N is also a colouring function of RG(N).

e Given a coloured transition system,
is there a coloured Petri net implementing it?
This question is much more difficult to answer.

Paris, September 2011 - MeFoSyLoMa

Distributed Petri nets

Each colour specifies some location:
e Same colour, same location.
o Different colours, different locations.

A bad case which we want to avoid is that two differently
coloured transitions share a common input place:

Definition (Caillaud):

A Petri net whose transitions T are coloured by

col: T — COLOURS is called distributed

if all t1, t, with col(t;) # col(ty) satisfy *t; N *t, = 0, that is, the
sets of pre-places of differently coloured transitions are disjoint.

Paris, September 2011 - MeFoSyLoMa

Three simple examples

Petri nets with transitions a, b, and their reachability graphs:

a‘%b @é@?é %fﬁ

distributed not distributed distributed

Paris, September 2011 - MeFoSyLoMa
Potential distributability

A transition system is called potentially distributable if s, &s,
and s; LA s3 and col(a) # col(b) imply that there is a state s,
such that s, > s, and s3 = s4.

o

potentially not potentially potentially
distributable distributable distributable

For the rest of this talk, all transition systems will be assumed
potentially distributable.

It will be discussed whether a potentially distributable transition
system can actually be implemented distributedly.

Paris, September 2011 - MeFoSyLoMa

A size 4 cycle

. let
<ry 1) 1

The net on the |.h.s. is not distributed

but its transition system is potentially distributable.

There is some “distributed implementation” of it (r.h.s.).

Paris, September 2011 - MeFoSyLoMa

A size 4 cycle

. let
<ry 1) i

The net on the |.h.s. is not distributed

but its transition system is potentially distributable.

There is some “distributed implementation” of it (r.h.s.).

Paris, September 2011 - MeFoSyLoMa

A size 4 cycle

. let
<ry 1) 1

The net on the |.h.s. is not distributed

but its transition system is potentially distributable.

There is some “distributed implementation” of it (r.h.s.).

Paris, September 2011 - MeFoSyLoMa

A size 4 cycle

o

The net on the |.h.s. is not distributed

but its transition system is potentially distributable.

There is some “distributed implementation” of it (r.h.s.).

Paris, September 2011 - MeFoSyLoMa

A size 4 cycle

. let
<ry 1) 1

The net on the |.h.s. is not distributed

but its transition system is potentially distributable.

There is some “distributed implementation” of it (r.h.s.).

Paris, September 2011 - MeFoSyLoMa

Distributed implementation

A coloured transition system TS is distributable
if there is some transition system TS’ satisfying

related (TS, TS’)

such that TS’ is the reachability graph of a distributed Petri net.

A coloured Petri net is distributable if its reachability graph is
distributable.

How can “related” be interpreted meaningfully in this context?

Three answers: ldentity; Renaming; Unfolding.
One non-answer: Refinement.

Paris, September 2011 - MeFoSyLoMa

Refinement: two techniques

Can every coloured Petri net easily be distributed using
T-transitions? Two techniques for doing so:

¢ Refine every place-transition arc by
a busy wait loop involving two 7-transitions:

Q»Dwoig\ -

But: Introduces divergence and/or a r-transition may reside on
a location which differs from that of the transition whose input
arc it replaces. Unrealistic and counterintuitive.

e Refine every transition t by a sequence (7;t).

Creates some freedom for colouring the newly introduced
T-transitions. We might use a unique colour for all of them.

Paris, September 2011 - MeFoSyLoMa

Refinement: an example for the second technique

/@\
A

The net is now distributed. However, this construction is also
rather artificial. It amounts essentially to shifting choice
resolutions onto only one fixed unique location, which is
counter to what is meant by “distributing” a net.

Thus, we discard refinement and the use of r-transitions.

Paris, September 2011 - MeFoSyLoMa

Identity

a

Consider again the cycle of length 4: cl o

'

It is the reachability graph RG of a non-distributed Petri net.
But it is also the reachability graph RG’ of a distributed Petri net.

Hence it is distributable if

TS and TS’ are isomorphic = related (TS, TS’)

Paris, September 2011 - MeFoSyLoMa

Renaming

: a
Consider once more the cycle of length 4:
Note that the two transitions labelled c
can be considered as distinct, as they are ¢ ¢

not mutually involved in concurrent diamonds.

a
We might as well I
actually distinguish them ¢
by renaming one of them
toc’:

o

Hence it is distributable if

TS’ is an arc-label renamed version of TS = related (TS, TS’)

Paris, September 2011 - MeFoSyLoMa

Implementing a transition system, (i) and (ii)

So far, we have identified two ways of implementing a TS:

(i) Direct realisation: Find a coloured net with reachability
graph TS. Caillaud’s tool synet is an expert in doing this.
The relation related (TS, TS’) describes the identity relation
(TS and TS’ are isomorphic).

(i) Renaming: Find a coloured transition system TS’ by
renaming some transitions of TS suitably, leaving the set of
states unchanged.

The relation related (TS, TS’) describes the renaming
relation (some transitions are renamed in TS’ w.r.t. TS).

Paris, September 2011 - MeFoSyLoMa

An aside: Renaming is not innocuous

We may, for instance, create a transition system which is not
the reachability graph of a Petri net out of one which is:

a a a a

. m ? >

b b b b b’ b

‘ aJ aJ E E a' a'
Not a

reachability graph
of any Petri net

Y

Paris, September 2011 - MeFoSyLoMa

Renaming local, nondistributed diamonds

Nondistributed: Distributed:
a b

v

In the second case, a (say, in Argentina) may not influence b
(say, in Belgium) locally. With this intuition, renaming is only
allowed for local diamonds:

Allowed! Forbidden!

Paris, September 2011 - MeFoSyLoMa

An example where Identity fails but Renaming works

TS is the reachability graph of N.

N is not distributed.

There is no distributed Petri net with reachability graph TS.
TS’ is a renamed version of TS.

A distributed Petri net with reachability graph TS’ exists.

Paris, September 2011 - MeFoSyLoMa

An example where Renaming does not work

TS: }%’/a

No renamed version However, we may
of TS is distributable “unfold” TS in this way

The unfolded transition system is still not distributable.
However, an additional renaming (giving the second copy
different names) works.

Paris, September 2011 - MeFoSyLoMa

An example where Renaming combined with
Unfolding works

A distributable transition system (l.h.s.)
and its distributed Petri net (r.h.s).

Paris, September 2011 - MeFoSyLoMa

Implementing a TS, (iii)

A third method (in addition to (i) direct realisation, and (ii)
renaming) for implementing a coloured transition system TS
was identified:

(iii) Unfolding: Find a coloured transition system TS’ by
unfolding (and perhaps also renaming) a given transition
system TS suitably, and find a Petri net implementing TS’.
Here, related (TS, TS’) means that TS’ is an unfolding
(perhaps with renaming) of TS.

We have found no other ways of distributing a transition system
systematically.

Paris, September 2011 - MeFoSyLoMa

An example where none of the three methods work

This example, using three colors, cannot even be resolved if
one attempts to unfold infinitely often (as on the right-hand side)
and if the distributed Petri net is allowed to be unbounded.

Paris, September 2011 - MeFoSyLoMa

Categorising the methods (i)—(iii) using patterns

The three methods (identity, renaming, unfolding) will be
categorised and evaluated.

Patterns that may be obstructive for distributability will be
identified.

The previous examples will be recapitulated in the light of these
patterns.

Paris, September 2011 - MeFoSyLoMa

Pattern 1: Dangerous nondistributed half-persistency

Transitions a, d are forming three quarters of a diamond.
Nondistributed: a, d are from the same colour.
Half-persistency:

a persists over d, but d does not persist over a.

a b

—————————— >+ @MV

I

d d x

|

From the tip, some transition b of a different colour is not
enabled, while b is enabled from one of the sides.

This dangerous, because it signifies delayed (by a) choice
between d and b, which is likely to create an input place of d
and b (making it non-distributed).

Paris, September 2011 - MeFoSyLoMa

Examples of nondistributed half-persistency

AN SN
EL

Dangerous half-persistency occurs on the left-hand side.
It can be mended by renaming one of the a transitions.

The pattern also occurs on the right-hand side.
It can be mended there only after an unfolding step.

Paris, September 2011 - MeFoSyLoMa

Pattern 2: Bad cycle condition

a

: :
dl ¢ 'C
I I
v \
@ MA@
a b

Transition ¢ creates a token which is consumed by the
differently coloured b. c is in a diamond with a differently
coloured transition a. A cycle contains c, but not any transition
of the same colour as b. The cycle must consume any tokens
created by c.

Hence some token is consumed both by b and by some
transition t of a different colour than b. This token must stay on
some place s which is an input both to b andto t # b.

A transition system satisfying the bad cycle condition can
therefore not be distributed.

Paris, September 2011 - MeFoSyLoMa

Example of bad cycle condition

7
\ C \\‘
\\ a

c "»
b

This TS satisfies the bad cycle condition.

Hence there can be no distributed Petri net implementing it.

Paris, September 2011 - MeFoSyLoMa

Summary so far

e It is difficult to give precise conditions for a transition
system to correspond to a distributed Petri net.

¢ In case there is dangerous nondistributed
(half-)persistency, one may hope to get rid of it
by renaming and/or unfolding.

¢ If the bad cycle condition is satisfied, there is
no hope of getting a distributed implementation at all.

It is unknown whether the absence of dangerous nondistributed
(half-)persistency and of bad cycles already guarantees
distributed implementability.

Therefore: we examine classes of transition systems which do
not exhibit either of these patterns, in order to find out whether
there are any other detrimental situations.

Paris, September 2011 - MeFoSyLoMa

A class of transition systems
Consider reachability graphs of Petri nets satisfying:
(a) They are finite and strongly connected.
(b) They are persistent (i.e., if a state enables a and b, and if
a # b, then also ab and ba are enabled).
(c) All simple cycles in the reachability graph have the same
Parikh (i.e.: transition count) vector.

@—c]——®

Paris, September 2011 - MeFoSyLoMa

Two classes of Petri nets

A Petri net is called output-nonbranching (or ON, for short) if
every place has at most one output transition.

No /O\

L] L]
A Petri net is called marked graph if every place has at most
one input and at most output transition.

No /O\ and no EL‘O‘)]

L] L]
Marked graphs are well understood since 1969 (Genrich,
Commoner, Pnueli et al.).
Both classes correspond to system classes shown by Lamport
to be arbiter-free.

Paris, September 2011 - MeFoSyLoMa

A conjecture

Claim:

Every transition system satisfying (a)—(c) is the reachability
graph of some ON Petri net.

Corollary:

Transition systems satisfying (a)—(c) are distributable.

There are some Petri net classes which have been studied in
the literature and which satisfy Properties (a)—(c):

¢ live marked graphs

¢ plain, bounded, persistent, and reversible nets which are
k-marked with k > 2.

The class delineated by (a)-(c) is larger than either.

Paris, September 2011 - MeFoSyLoMa

ON Petri net of a reachability graph satisfying (a)—(c)

Note: Standard region theory will not produce this Petri net.

Paris, September 2011 - MeFoSyLoMa

Open problems

¢ Prove the conjecture.
e Collect necessary conditions for distributability.
e Collect sufficient conditions for distributability.

¢ Solve the distributability problem.
l.e.: find a necessary and sufficient condition for
distributability.

e Forge links to arbitration-free synchronisation primitives.

e Find practical applications by deciding which nets can be
distributed and which cannot.

Paris, September 2011 - MeFoSyLoMa

References

e Eric Badouel, Benoit Caillaud, Philippe Darondeau:
Distributing Finite Automata through Petri Net Synthesis.
Journal on Formal Aspects of Computing (2002).

e Eric Badouel, Philippe Darondeau: Theory of regions.
Lectures on Petri Nets I: Basic Models, LNCS Vol. 1491 (1999).
e Eike Best, Philippe Darondeau: Separability in Persistent Petri
Nets. In J. Lilius and W. Penczek, editors, Petri Nets 2010,
LNCS Vol. 6128 (2010).

e Eike Best, Richard P. Hopkins: B(PN)? - a Basic Petri Net
Programming Notation. PARLE (1993).

e Benoit Caillaud: Try out his tool at

http://ww. irisa.fr/s4/tool s/synet/.

e Richard P. Hopkins: Distributable Nets. In Advances of Petri
Nets, LNCS Vol. 524 (1991).

e Leslie Lamport: Arbiter-Free Synchronization. Distributed
Computing 16 (2003).

http://www.irisa.fr/s4/tools/synet/

	Paris, September 2011 - MeFoSyLoMa

