Synthesis and Analysis of Product-form Petri Nets

Serge Haddad⁽¹⁾, Jean Mairesse⁽²⁾, Hoang-Thach Nguyen⁽²⁾

(1) LSV CNRS & ENS Cachan & INRIA Saclay, (2) LIAFA CNRS & Université Paris 7

Petri Nets 2011 Mefosyloma seminar, the 4th May 2012

イロト 不得下 イヨト イヨト

Plan

- 2 Synthesis of product-form Petri nets
- 3 Complexity of product-form Petri net problems
- A new subclass of product-form Petri nets

Image: A math a math

Plan

Context and motivation

2 Synthesis of product-form Petri nets

3 Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

S. Haddad, J. Mairesse, H-T. Nguyen (LSV/LIAFA)

・ロン ・回 と ・ ヨン・

Stochastic Petri Net: Syntax

A stochastic Petri net (SPN) is defined by:

- a Petri net
- an exponential distribution per transition t with rate λ_t

Stochastic Petri net: Semantic

The stochastic process associated with a SPN is:

- a continuous time Markov chain (CTMC)
- isomorphic to the reachability graph of the Petri net
- with infinitesimal generator

$$Q[m,m'] = \sum_{m \stackrel{t}{\longrightarrow} m'} \lambda_t \text{ and } Q[m,m] = -\sum_{m' \neq m} Q[m,m']$$

ADEA

Quantitative Analysis of SPN

Two kinds of analysis

- Transient behaviour
- Steady-state behaviour

Steady-state distribution

Assume that the marking process is ergodic. (*i.e.* the reachability graph has a single terminal component)

Then the steady-state distribution is the unique probability distribution π_{∞} that fulfills:

$$\pi_{\infty} \cdot Q = 0$$

Drawback: The numerical resolution suffers from the state space explosion.

Alternative: Look for models for which the steady-state distribution can be expressed by an analytical formula *(called product-form)*.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Product-form for Queues A single queue

Let $\rho=\lambda/\mu$ be the utilisation factor. If $\rho<1$ then:

$$\pi_{\infty}(n) = \rho^n (1-\rho)$$
 where $n = m(p)$

・ロト ・回ト ・ヨト ・

Product-form for Queues A single queue

Let $\rho=\lambda/\mu$ be the utilisation factor. If $\rho<1$ then:

$$\pi_{\infty}(n) = \rho^n (1-\rho)$$
 where $n = m(p)$

Queues in tandem

Let
$$\rho_1 = \lambda/\mu$$
 and $\rho_2 = \lambda/\delta$.
If $\rho_1 < 1$ and $\rho_2 < 1$ then:

$$\pi_{\infty}(n_1, n_2) = \rho_1^{n_1}(1 - \rho_1)\rho_2^{n_2}(1 - \rho_2)$$

・ロン ・回 と ・ ヨン・

where $n_i = m(p_i)$

Product-form for Closed Queueing Networks

Visit ratios of queues $i: v_i$ (up to a constant)

Visit ratios fulfill: $v_1 = v_3 + qv_2$, $v_2 = pv_1$ and $v_3 = (1-p)v_1 + (1-q)v_2$ Thus: $v_1 = 1$, $v_2 = p$ and $v_3 = 1 - pq$.

Define
$$ho_1=rac{v_1}{u}$$
, $ho_2=rac{v_2}{\delta}$, $ho_3=rac{v_3}{\lambda}$ and $n_i=m(p_i)$

- $\pi_{\infty}(n_1, n_2, n_3) = \frac{1}{G} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3}$ (with $n_1 + n_2 + n_3 = n$)
- where G is the normalising constant.

イロト イヨト イヨト イヨ

Computation of the Normalising Constant

 ${\boldsymbol{G}}$ the normalising constant is computed by dynamic programming.

Let ${\cal G}(k,s)$ be the normalising constant corresponding to k clients in the s first queues. Then:

•
$$\forall k \leq n \ G(k,0) = 0$$
,

•
$$\forall s \leq |P| \ G(0,s) = 1$$
,

• $\forall 0 < k \le n \ \forall 0 < s \le |P|$ (decomposition w.r.t $n_s [\stackrel{>}{=}]0$)

$$G(k,s) = \sum_{n_1 + \dots + n_s = k} \prod_{0 < i \le s} \rho_i^{n_i}$$

= $\rho_s \left(\sum_{n_1 + \dots + n_s = k-1} \prod_{0 < i \le s} \rho_i^{n_i} \right) + \sum_{n_1 + \dots + n_{s-1} = k} \prod_{0 < i \le s-1} \rho_i^{n_i}$
= $\rho_s G(k-1,s) + G(k,s-1)$

Computation Time: $\Theta(np)$ versus $\Theta(n^{p-1})$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Specific Product-form for SPNs

First general product-form SPNs

- a structural subclass: Π -nets
- with an additional numerical condition on rates

Product Form Equilibrium Distributions and a Convolution Algorithm for Stochastic Petri Nets J.L. Coleman,W. Henderson, P.G. Taylor, Performance Evaluation, 1996

First purely structural product-form SPNs: Π^2 -nets

Product-Form and Stochastic Petri Nets: a Structural Approach S. Haddad, P. Moreaux, M. Sereno, M. Silva, Performance Evaluation, 2005

Equivalence between Π^2 -nets and some product-form biological systems

Deficiency Zero Petri Nets and Product Form

J. Mairesse, H-T. Nguyen, Fundamenta Informaticae, 2010

イロト イポト イヨト イヨト

$\Pi\text{-nets:}$ the Resource Graph

The resource graph

- The vertices are the input and the ouput bags of the transitions.
- Every transition of the net t yields a graph transition ${}^{\bullet}t \xrightarrow{t} t^{\bullet}$
- Client classes correspond to the connected components of the graph (which can be also seen as DTMCs).

A Π -net is a net such that:

the connected components of the resource graph are strongly connected.

• • • • • • • • • • • •

Π^2 -nets: Witnesses

Vector -p5-p6 is a witness for bag p4:

 $(-p_5-p_6) . W (t_6) = (-p_5-p_6) . W (t_7) = 1$ $(-p_5-p_6) . W (t_4) = -1$ $(-p_5-p_6) . W (t) = 0$ for every other t

Witness for a bag b (W(t) is the incidence of t)

• Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.

- Let v be a place vector, v is a witness for b if:
 - $\forall t \in In(b) \ v \cdot W(t) = -1$
 - $\forall t \in Out(b) \ v \cdot W(t) = 1$
 - $\forall t \notin In(b) \cup Out(b) \ v \cdot W(t) = 0$

A Π^2 -net is a Π -net such that: every bag has a witness.

イロト イヨト イヨト イヨ

Steady-State Distribution of a Π^2 -net

The reachability space:

$$\begin{split} & \texttt{m}(\texttt{p}_1) + \texttt{m}(\texttt{p}_2) + \texttt{m}(\texttt{p}_3) = 2 \\ & \texttt{m}(\texttt{p}_2) + \texttt{m}(\texttt{p}_3) + \texttt{m}(\texttt{p}_4) + \texttt{m}(\texttt{p}_5) + \texttt{m}(\texttt{p}_6) = \end{split}$$

Steady-state distribution

- Let w(b) the witness for bag b.
- Compute the ratio visit of bags v(b) on the resource graph.
- $\bullet\,$ The output rate of a bag b is $\mu(b) = \sum_{t|\bullet t = b} \lambda_t$

• Then:
$$\pi_{\infty}(m) = \frac{1}{G} \prod_{b} \left(\frac{v(b)}{\mu(b)} \right)^{w(b) \cdot m}$$

The product form can be rewritten as $\pi_\infty(m) = \frac{1}{G} \prod_{p \in P} \rho_p^{m(p)}$

The Normalising Constant of a Π^2 -net

The normalising constant can be efficiently computed if the reachability space is characterized by Am = b.

•
$$m_p = \min(\left\lfloor \frac{b[r]}{A[r,p]} \right\rfloor \mid A[r,p] > 0)$$
 is an upper bound of $m(p)$.
• $G(b,P) = \sum_{0 \le i \le m_p} \rho_p^i G(b_i, P \setminus \{p\})$ where $b_i[r] = b[r] - iA[r,p]$
• If $b = \vec{0}$ then $G(b, \emptyset) = 1$ else $G(b, \emptyset) = 0$

All known subclasses of Π^2 -nets fulfilling this property are queueing systems!

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Issues for $\Pi^2\text{-nets}$

Open problems

- Modelling with Π^2 -nets Synthesis of Π^2 -nets
- Qualitative analysis of Π^2 -nets Complexity of standard problems (reachability, coverability, etc.)
- Quantitative analysis Handling the normalising constant without building the reachability graph

Our contributions

- $\bullet\,$ Design of a sound and complete set of rules for synthetising every $\Pi^2\text{-net}$
- Characterization of complexity for standard problems
- Definition of a large subclass of $\Pi^2\text{-nets}$ with an efficient computation of the normalising constant

イロト イヨト イヨト イヨト

Plan

Context and motivation

2 Synthesis of product-form Petri nets

3 Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

S. Haddad, J. Mairesse, H-T. Nguyen (LSV/LIAFA)

・ロト ・回ト ・ヨト ・

Three Sound and Complete Synthesis Rules for Π^2 -nets

First rule. Add a disjoint strongly connected state machine.

Second rule. Delete an isolated place.

Third rule. Substitute to an input/output bag b the bag b + kp ($b(p) + k \ge 0$) with the following requirements:

- b + kp is not already an input/output bag
- Every bag has a witness whose support does not contain *p* (decidable in polynomial time)

イロト 不得下 イヨト イヨト

Synthesis process example

イロト イヨト イヨト イヨ

Plan

Context and motivation

2 Synthesis of product-form Petri nets

3 Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

イロト イロト イヨト イ

Complexity results

In safe Petri nets

Previous results

- $\bullet\,$ The reachability and liveness problems for safe $\Pi\text{-nets}$ are PSPACE-complete.
- The reachability and liveness problems for safe $\Pi^2\text{-nets}$ are NP-hard.

Our results

The reachability and liveness problems for safe Π^2 -nets are PSPACE-complete.

• • • • • • • • • • • •

Complexity results

In safe Petri nets

Previous results

- $\bullet\,$ The reachability and liveness problems for safe $\Pi\text{-nets}$ are PSPACE-complete.
- The reachability and liveness problems for safe Π^2 -nets are NP-hard.

Our results

The reachability and liveness problems for safe Π^2 -nets are PSPACE-complete.

In general Petri nets

Previous results

The reachability and coverability problems for $\Pi\text{-nets}$ are EXPSPACE-complete.

Our results

The coverability problem for $\Pi^2\text{-nets}$ is EXPSPACE-complete.

イロト イロト イヨト イヨト

The Reachability Problem for Safe Petri nets Reachability is in PSPACE.

Incrementally guess a firing sequence of length less than $2^{|P|}$

Reachability is PSPACE-hard. Given a Turing machine $\mathcal{M} = (Q, \Sigma, q_0, q_f, \delta)$ operating in space p(n) and a word w of length n, build a net net with:

- Places q for q ∈ Q, places read_i for 1 ≤ i ≤ p(n) and places a_i for a ∈ Σ and 1 ≤ i ≤ p(n);
- Transitions $t_{q,i,a}$ for $q \in \Sigma$, $1 \le i \le p(n)$ and $a \in \Sigma$ whose forward incidence depend on δ ;
- The initial marking is $q_0 + \sum_{i=1}^n w_i + \sum_{i=n+1}^{p(n)} blank_i + read_1$ and the final marking is $q_f + \sum_{i=1}^{p(n)} blank_i + read_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Reachability Problem for Safe Π -nets

In order to get a safe $\Pi\text{-net},$ one adds reverse transitions.

The reduction is still valid.

However generally the net is not a Π^2 -net.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The Reachability Problem for Safe Π^2 -nets

PSPACE-Hardness is proved by reduction of the QBF satisfiability problem of:

$$\varphi \equiv \forall x_n \exists y_n \forall x_{n-1} \exists y_{n-1} \dots \forall x_1 \exists y_1 \psi \text{ (with } \psi \text{ in CNF)}$$

Principle of the reduction.

- A subnet modelling two n + 3-bit (from 0 to n + 2) counters to enumerate all tuples $(x_n, x_{n-1}, \ldots, x_1)$.
- For all $1 \le i \le n$, a subnet enabling to choose values for (y_i, \ldots, y_1) each time x_i is changed.
- A subnet checking the truth of ψ including additional synchronizations with the previous subnets.

The bit 0 forces the checking of ψ for every tuple $(x_n, x_{n-1}, \ldots, x_1)$.

The bit n+1 is used for the initial guess of (y_n, \ldots, y_1) .

The bit n + 2 is used for resetting (y_n, \ldots, y_1) in order to get a reachability problem.

<ロ> (日) (日) (日) (日) (日)

A Π^2 -net Modelling a Counter $P = \{p_0, \dots, p_{k-1}, q_0, \dots, q_{k-1}\}$ $T = \{t_0, \dots, t_{k-1}, t_0^-, \dots, t_{k-1}^-\}$ For all $0 \le i < k$, $\bullet t_i = p_i + \sum_{j < i} q_j$ and $t_i^{\bullet} = q_i + \sum_{j < i} p_j$ For all $0 \le i < k$, t_i^- is the reverse transition of t_i For all $0 \le i < k$, $m_0(p_i) = 1$ and $m_0(q_i) = 0$

A 3-bit counter (without the reverse transitions)

The bag $p_i + \sum_{j < i} q_j$ (resp. $q_i + \sum_{j < i} p_j$) has for witness:

$$p_i + \sum_{j>i} 2^{j-i-1} p_j \text{ (resp. } q_i + \sum_{j>i} 2^{j-i-1} q_j \text{)}$$

Synchronizing Two Counters

Places go and go' synchronize the two counters in such a way that: either count' = count or count' = count - 1.

The bags are enlarged with place go or go'.

The witnesses are unchanged.

・ロン ・回 と ・ ヨン・

Handling the Existential Variables

Between the firing of t_i and t'_i $(i \ge 1)$ which updates x_i, \ldots, x_1 , the following subnet allows to update y_i, \ldots, y_1 .

The bags of the counter subnet are enlarged with places u_i and their witnesses remain the same.

The new bag $y_i + u_i$ (resp. $ny_i + u_i$) has for witness y_i (resp. ny_i).

・ロト ・日下・ ・ ヨト・

Checking a Clause

It consists to choose literal $l_{j,k}$ that proves the truth of clause C_j .

The bag $mutex_j + \ell_{j,k}$ (resp. $success_j + n\ell_{j,k}$) has for witness $-n\ell_{j,k}$ (resp. $n\ell_{j,k}$).

・ロン ・回 と ・ ヨン・

Synchronizing the Clauses and the Literals

In order to set bit 0 of the first counter (transition t_0) to 1, all clauses must be proved.

The literals are synchronized with the variables (the initial marking is chosen accordingly).

The bags are enlarged but the witnesses are unchanged.

When literal $l_{j,k}$ proves clause C_j (place $nl_{j,k}$ marked) the value of the corresponding variable cannot be changed.

Plan

Context and motivation

- 2 Synthesis of product-form Petri nets
- 3 Complexity of product-form Petri net problems
- A new subclass of product-form Petri nets

・ロト ・回ト ・ヨト ・

Ordered Π -nets

An ordered Π -net is a set of strongly connected state machines $\mathcal{M}_1, \ldots, \mathcal{M}_n$ with additional edges where:

- transitions of M_{i+1} are only connected to P_{i+1} ∪ P_i (with at least an edge between M_{i+1} and M_i).
- $\mathcal{M}_{i+1} \cup \mathcal{M}_i$ is a Π -net with resource graph isomorphic to the disjoint unions ot the two machines

There exists a witness for every bag which can be computed inductively from higher to lower levels. So ordered Π -nets are Π^2 -nets.

Linear Invariants of Ordered II-nets

In ordered $\Pi\text{-nets},$ there is a basis of linear invariants

- whose cardinality is n, the number of state machines,
- obtained by summing the witnesses per state machine.

Example $(m(P_i) = \sum_{p \in P_i} m(p))$ $m(P_3) = 3$ $m(P_2) - (2m(p_3) + m(q_3)) = -3$ $m(P_1) - ((2m(p_2) + 2m(q_2) + m(r_2)) - (4m(p_3) + 2m(q_3))) = 10$

Π^3 -nets: Potentials

Potential of a place $p \in \mathcal{M}_{i+1}$

Let $t \in T_{i+1}$ such that $p \in t^{\bullet}$, then the potential of p is the number of tokens produced by t in \mathcal{M}_i (i.e. $|t^{\bullet} \cap P_i|$).

A Π^3 -net is an ordered Π -net where transitions of \mathcal{M}_{i+1} are only connected to places of \mathcal{M}_i with maximal potential.

・ロン ・回 と ・ ヨン・

Reachability in Π^3 -nets: Spurious Markings

The set of markings fulfilling the invariants is a *superset* of reachable markings.

In nets, a spurious marking is an unreachable marking fulfilling the invariants.

 Π^3 -nets admit spurious markings (e.g. $m = 3q_3 + 4p_1$).

Liveness: a Polynomial Time Characterization (1)

A net is *live* if for all reachable marking m and transition t, there exists a marking m_t reachable from m and where t is fireable.

The *i*-minimal marked potential of a marking m, $\varphi_i(m)$, is the minimal potential of marked places of P_i .

イロト イヨト イヨト イヨ

Liveness: a Polynomial Time Characterization (2)

Theorem

Let \mathcal{N} be a Π^3 -net. Then a marking m is live if and only if: \mathcal{M}_n is marked (i.e. $m(P_n) > 0$) and $\forall 1 < i \le n \ m(P_{i-1}) \ge \varphi_i(m)$

(Only if) $m(P_n) = 0 \Rightarrow \mathcal{M}_n$ dead. $\exists 1 < i \le n \ m(P_{i-1}) < \varphi_i(m) \Rightarrow \mathcal{M}_i$ dead.

(If, sketch) In any \mathcal{M}_i , a token can be moved from one place to another place without moving the other tokens in $\bigcup_{j>i} \mathcal{M}_j$.

イロト イヨト イヨト イヨト

Reachability: a Polynomial Time Characterization

Theorem

Let (\mathcal{N}, m_0) be a live Π^3 -net. Then a marking m is reachable if and only if: it fulfills the invariants and (\mathcal{N}, m) is live

Sketch of Proof

Let m^* be a marking fulfilling the invariants and where marked places of any \mathcal{M}_i have maximal potential.

Then m^* is reachable from m_0 (using the proof of liveness).

Then any live m fulfilling the invariants is reachable from m_0 (using *weak reversibility* of Π -nets).

イロト 不得下 イヨト イヨト

Recurrence Equations for the Normalising Constant (1)

Places of $P_i = \{p_{i1}, \dots, p_{ik_i}\}$ are ordered by increasing potential.

 v_i is the flow vector defining the linear invariant related to \mathcal{M}_i .

Let $E(i, j, c_1, \ldots, c_i)$ be the set of markings such that:

- $\mathcal{M}_n, \ldots, \mathcal{M}_{i+1}$ are unmarked and places $p_{i(j+1)}, \ldots, p_{ik_i}$ are unmarked.
- $\forall 1 \leq s \leq i \ v_s \cdot m = c_s$
- $c_i > 0$
- m is live in $\mathcal{M}_1 \cup \ldots \cup \mathcal{M}_i$

Then:

• If
$$a < c_i$$
 and $j \ge 2$ then $E(i, j, c_1, \dots, c_i) \cap \{m | m(p_{ij}) = a\}$
 $= \{m + ap_{ij} \mid m \in E(i, j - 1, c_1 - av_1(p_{ij}), \dots, c_i - av_i(p_{ij}))\}$
• If $i > 1$ and $c_{i-1} > c_i v_{i-1}(p_{ij})$ then $E(i, j, c_1, \dots, c_i) \cap \{m | m(p_{ij}) = c_i\}$
 $= \{m + c_i p_{ij} \mid m \in E(i - 1, k_{i-1}, c_1 - c_i v_1(p_{ij}), \dots, c_{i-1} - c_i v_{i-1}(p_{ij}))\}$

• If i > 1 and $c_{i-1} \leq c_i v_{i-1}(p_{ij})$ then $E(i, j, c_1, \dots, c_i) \cap \{m | m(p_{ij}) = c_i\} = \emptyset$

Observation: This result is based on a behavioural analysis.

イロト イポト イヨト イヨト

Recurrence Equations for the Normalising Constant (2)

Let us consider:

- the "relative" product-form distribution as $\pi_r(m) = \prod u_{ij}^{m(p_{ij})}$
- when $c_i > 0$, the normalising constant

$$G(i, j, c_1, \dots, c_i) = \sum_{m \in E(i, j, c_1, \dots, c_i)} \pi_r(m)$$

• when
$$c_i \leq 0$$
, $G(i, j, c_1, ..., c_i) = 0$

Then (for $i \ge 2$ and $j \ge 2$):

$$G(i, j, c_1, \dots, c_i) = \sum_{\nu=0}^{c_i-1} u_{ij}^{\nu} G(i, j-1, c_1 - \nu v_1(p_{ij}), \dots, c_i - \nu)$$

$$+u_{ij}^{c_i}G(i-1,k_{i-1},c_1-c_iv_1(p_{ij}),\ldots,c_{i-1}-c_iv_{i-1}(p_{ij}))$$

Observation:

The c_j 's may be negative but their absolute value is bounded by some constant.

イロト イヨト イヨト イヨ

Conclusion and Perspectives

Contributions

- $\bullet\,$ Synthesis rules for $\Pi^2\text{-nets}$
- $\bullet\,$ Characterization of the complexity of qualitative problems for $\Pi^2\text{-nets}$
- $\bullet\,$ Introduction of $\Pi^3\text{-nets}$ with efficient qualitative and quantitative analysis

Perspectives

- Developing or extending a tool (like GreatSPN)
- $\bullet\,$ Extending the set of rules and specializing them for $\Pi^3\text{-nets}$
- Proving EXPSPACE-completeness for reachability of $\Pi^2\text{-nets}$
- Handling unbounded nets

イロト イポト イヨト イヨ