Synthesis and Analysis of Product-form Petri Nets

Serge Haddad ${ }^{(1)}$, Jean Mairesse ${ }^{(2)}$, Hoang-Thach Nguyen ${ }^{(2)}$
(1) LSV CNRS \& ENS Cachan \& INRIA Saclay, (2) LIAFA CNRS \& Université Paris 7

$$
\text { Petri Nets } 2011
$$

Mefosyloma seminar, the 4th May 2012

Plan

(1) Context and motivation
(2) Synthesis of product-form Petri nets
(3) Complexity of product-form Petri net problems
(4) A new subclass of product-form Petri nets

Plan

(1) Context and motivation

(2) Synthesis of product-form Petri nets

(3) Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

Stochastic Petri Net: Syntax

A stochastic Petri net (SPN) is defined by:

- a Petri net
- an exponential distribution per transition t with rate λ_{t}

Stochastic Petri net: Semantic

The stochastic process associated with a SPN is:

- a continuous time Markov chain (CTMC)
- isomorphic to the reachability graph of the Petri net
- with infinitesimal generator

$$
Q\left[m, m^{\prime}\right]=\sum_{m \rightarrow m^{\prime}} \lambda_{t} \text { and } Q[m, m]=-\sum_{m^{\prime} \neq m} Q\left[m, m^{\prime}\right]
$$

Quantitative Analysis of SPN

Two kinds of analysis

- Transient behaviour
- Steady-state behaviour

Steady-state distribution

Assume that the marking process is ergodic.
(i.e. the reachability graph has a single terminal component)

Then the steady-state distribution is the unique probability distribution π_{∞} that fulfills:

$$
\pi_{\infty} \cdot Q=0
$$

Drawback: The numerical resolution suffers from the state space explosion.

Alternative: Look for models for which the steady-state distribution can be expressed by an analytical formula (called product-form).

Product-form for Queues

A single queue

Let $\rho=\lambda / \mu$ be the utilisation factor. If $\rho<1$ then:

$$
\pi_{\infty}(n)=\rho^{n}(1-\rho) \text { where } n=m(p)
$$

Product-form for Queues

A single queue

Let $\rho=\lambda / \mu$ be the utilisation factor. If $\rho<1$ then:

$$
\pi_{\infty}(n)=\rho^{n}(1-\rho) \text { where } n=m(p)
$$

Queues in tandem

Let $\rho_{1}=\lambda / \mu$ and $\rho_{2}=\lambda / \delta$. If $\rho_{1}<1$ and $\rho_{2}<1$ then:

$$
\begin{aligned}
& \quad \pi_{\infty}\left(n_{1}, n_{2}\right)=\rho_{1}^{n_{1}}\left(1-\rho_{1}\right) \rho_{2}^{n_{2}}\left(1-\rho_{2}\right) \\
& \text { where } n_{i}=m\left(p_{i}\right)
\end{aligned}
$$

Product-form for Closed Queueing Networks

Visit ratios of queues i : v_{i} (up to a constant)

Visit ratios fulfill: $v_{1}=v_{3}+q v_{2}, v_{2}=p v_{1}$ and $v_{3}=(1-p) v_{1}+(1-q) v_{2}$ Thus: $v_{1}=1, v_{2}=p$ and $v_{3}=1-p q$.

Define $\rho_{1}=\frac{v_{1}}{\mu}, \rho_{2}=\frac{v_{2}}{\delta}, \rho_{3}=\frac{v_{3}}{\lambda}$ and $n_{i}=m\left(p_{i}\right)$

- $\pi_{\infty}\left(n_{1}, n_{2}, n_{3}\right)=\frac{1}{G} \rho_{1}^{n_{1}} \rho_{2}^{n_{2}} \rho_{3}^{n_{3}}$ (with $n_{1}+n_{2}+n_{3}=n$)
- where G is the normalising constant.

Computation of the Normalising Constant

G the normalising constant is computed by dynamic programming.
Let $G(k, s)$ be the normalising constant corresponding to k clients in the s first queues. Then:

- $\forall k \leq n G(k, 0)=0$,
- $\forall s \leq|P| G(0, s)=1$,
- $\forall 0<k \leq n \forall 0<s \leq|P|$ (decomposition w.r.t $\left.n_{s}\left[\begin{array}{l}> \\ =\end{array}\right] 0\right)$

$$
\begin{gathered}
G(k, s)=\sum_{n_{1}+\cdots+n_{s}=k} \prod_{0<i \leq s} \rho_{i}^{n_{i}} \\
=\rho_{s}\left(\sum_{n_{1}+\cdots+n_{s}=k-1} \prod_{0<i \leq s} \rho_{i}^{n_{i}}\right)+\sum_{n_{1}+\cdots+n_{s-1}=k} \prod_{0<i \leq s-1} \rho_{i}^{n_{i}} \\
=\rho_{s} G(k-1, s)+G(k, s-1)
\end{gathered}
$$

Computation Time: $\Theta(n p)$ versus $\Theta\left(n^{p-1}\right)$

Specific Product-form for SPNs

First general product-form SPNs

- a structural subclass: Π-nets
- with an additional numerical condition on rates

Product Form Equilibrium Distributions
and a Convolution Algorithm for Stochastic Petri Nets
J.L. Coleman, W. Henderson, P.G. Taylor, Performance Evaluation, 1996

First purely structural product-form SPNs: Π^{2}-nets
Product-Form and Stochastic Petri Nets: a Structural Approach
S. Haddad, P. Moreaux, M. Sereno, M. Silva, Performance Evaluation, 2005

Equivalence between Π^{2}-nets and some product-form biological systems
Deficiency Zero Petri Nets and Product Form
J. Mairesse, H-T. Nguyen, Fundamenta Informaticae, 2010

Π-nets: the Resource Graph

The resource graph

- The vertices are the input and the ouput bags of the transitions.
- Every transition of the net t yields a graph transition ${ }^{\bullet} t \xrightarrow{t} t \bullet$
- Client classes correspond to the connected components of the graph (which can be also seen as DTMCs).

A Π-net is a net such that:
the connected components of the resource graph are strongly connected.

Π^{2}-nets: Witnesses


```
Vector \(-p_{5}-p_{6}\) is a witness for bag \(p_{4}\) :
\(\left(-p_{5}-p_{6}\right) \cdot W\left(t_{6}\right)=\left(-p_{5}-p_{6}\right) \cdot W\left(t_{7}\right)=1\)
\(\left(-p_{5}-p_{6}\right) \cdot W\left(t_{4}\right)=-1\)
\(\left(-p_{5}-p_{6}\right)\).W(t) \(=0\) for every other \(t\)
```


Witness for a bag $b(W(t)$ is the incidence of t)

- Let $\operatorname{In}(b)$ (resp. Out(b)) the transitions with input (resp. output) b.
- Let v be a place vector, v is a witness for b if:
- $\forall t \in \operatorname{In}(b) v \cdot W(t)=-1$
- $\forall t \in O u t(b) v \cdot W(t)=1$
- $\forall t \notin \operatorname{In}(b) \cup O u t(b) v \cdot W(t)=0$

A Π^{2}-net is a Π-net such that: every bag has a witness.

Steady-State Distribution of a Π^{2}-net


```
The reachability space:
m(p
m(p
```


Steady-state distribution

- Let $w(b)$ the witness for bag b.
- Compute the ratio visit of bags $v(b)$ on the resource graph.
- The output rate of a bag b is $\mu(b)=\sum_{t \mid \cdot t=b} \lambda_{t}$
- Then: $\pi_{\infty}(m)=\frac{1}{G} \prod_{b}\left(\frac{v(b)}{\mu(b)}\right)^{w(b) \cdot m}$

The product form can be rewritten as $\pi_{\infty}(m)=\frac{1}{G} \prod_{p \in P} \rho_{p}^{m(p)}$

The Normalising Constant of a Π^{2}-net

$$
\begin{aligned}
& \text { The reachability space: } \\
& m\left(p_{1}\right)+m\left(p_{2}\right)+m\left(p_{3}\right)=2 \\
& m\left(p_{2}\right)+m\left(p_{3}\right)+m\left(p_{4}\right)+m\left(p_{5}\right)+m\left(p_{6}\right)=3
\end{aligned}
$$

The normalising constant can be efficiently computed if the reachability space is characterized by $A m=b$.

- $m_{p}=\min \left(\left.\left\lfloor\frac{b[r]}{A[r, p]}\right\rfloor \right\rvert\, A[r, p]>0\right)$ is an upper bound of $m(p)$.
- $G(b, P)=\sum_{0 \leq i \leq m_{p}} \rho_{p}^{i} G\left(b_{i}, P \backslash\{p\}\right)$ where $b_{i}[r]=b[r]-i A[r, p]$
- If $b=\overrightarrow{0}$ then $G(b, \emptyset)=1$ else $G(b, \emptyset)=0$

All known subclasses of Π^{2}-nets fulfilling this property are queueing systems!

Issues for Π^{2}-nets

Open problems

- Modelling with Π^{2}-nets

Synthesis of Π^{2}-nets

- Qualitative analysis of Π^{2}-nets Complexity of standard problems (reachability, coverability, etc.)
- Quantitative analysis

Handling the normalising constant without building the reachability graph

Our contributions

- Design of a sound and complete set of rules for synthetising every Π^{2}-net
- Characterization of complexity for standard problems
- Definition of a large subclass of Π^{2}-nets with an efficient computation of the normalising constant

Plan

(1) Context and motivation
(2) Synthesis of product-form Petri nets
(3) Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

Three Sound and Complete Synthesis Rules for Π^{2}-nets

First rule. Add a disjoint strongly connected state machine.

Second rule. Delete an isolated place.

Third rule. Substitute to an input/output bag b the bag $b+k p(b(p)+k \geq 0)$ with the following requirements:

- $b+k p$ is not already an input/output bag
- Every bag has a witness whose support does not contain p (decidable in polynomial time)

Synthesis process example

Plan

(1) Context and motivation
(2) Synthesis of product-form Petri nets
(3) Complexity of product-form Petri net problems

(4) A new subclass of product-form Petri nets

Complexity results

In safe Petri nets

Previous results

- The reachability and liveness problems for safe Π-nets are PSPACE-complete.
- The reachability and liveness problems for safe Π^{2}-nets are NP-hard.

Our results

The reachability and liveness problems for safe Π^{2}-nets are PSPACE-complete.

Complexity results

In safe Petri nets

Previous results

- The reachability and liveness problems for safe Π-nets are PSPACE-complete.
- The reachability and liveness problems for safe Π^{2}-nets are NP-hard.

Our results

The reachability and liveness problems for safe Π^{2}-nets are PSPACE-complete.

In general Petri nets

Previous results

The reachability and coverability problems for Π-nets are EXPSPACE-complete.

Our results

The coverability problem for Π^{2}-nets is EXPSPACE-complete.

The Reachability Problem for Safe Petri nets

Reachability is in PSPACE.
Incrementally guess a firing sequence of length less than $2^{|P|}$
Reachability is PSPACE-hard. Given a Turing machine $\mathcal{M}=\left(Q, \Sigma, q_{0}, q_{f}, \delta\right)$ operating in space $p(n)$ and a word w of length n, build a net net with:

- Places q for $q \in Q$, places read $_{i}$ for $1 \leq i \leq p(n)$ and places a_{i} for $a \in \Sigma$ and $1 \leq i \leq p(n)$;
- Transitions $t_{q, i, a}$ for $q \in \Sigma, 1 \leq i \leq p(n)$ and $a \in \Sigma$ whose forward incidence depend on δ;
- The initial marking is $q_{0}+\sum_{i=1}^{n} w_{i}+\sum_{i=n+1}^{p(n)}$ blank $_{i}+$ read $_{1}$ and the final marking is $q_{f}+\sum_{i=1}^{p(n)}$ blank $_{i}+$ read $_{1}$.

The Reachability Problem for Safe П-nets

In order to get a safe Π-net, one adds reverse transitions.

The reduction is still valid.

However generally the net is not a Π^{2}-net.

The Reachability Problem for Safe Π^{2}-nets

PSPACE-Hardness is proved by reduction of the QBF satisfiability problem of:

$$
\varphi \equiv \forall x_{n} \exists y_{n} \forall x_{n-1} \exists y_{n-1} \ldots \forall x_{1} \exists y_{1} \psi \text { (with } \psi \text { in CNF) }
$$

Principle of the reduction.

- A subnet modelling two $n+3$-bit (from 0 to $n+2$) counters to enumerate all tuples $\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$.
- For all $1 \leq i \leq n$, a subnet enabling to choose values for $\left(y_{i}, \ldots, y_{1}\right)$ each time x_{i} is changed.
- A subnet checking the truth of ψ including additional synchronizations with the previous subnets.

The bit 0 forces the checking of ψ for every tuple ($x_{n}, x_{n-1}, \ldots, x_{1}$).
The bit $n+1$ is used for the initial guess of $\left(y_{n}, \ldots, y_{1}\right)$.
The bit $n+2$ is used for resetting $\left(y_{n}, \ldots, y_{1}\right)$ in order to get a reachability problem.

A Π^{2}-net Modelling a Counter

$P=\left\{p_{0}, \ldots, p_{k-1}, q_{0}, \ldots, q_{k-1}\right\}$
$T=\left\{t_{0}, \ldots, t_{k-1}, t_{0}^{-}, \ldots, t_{k-1}^{-}\right\}$
For all $0 \leq i<k,{ }^{\bullet} t_{i}=p_{i}+\sum_{j<i} q_{j}$ and $t_{i}^{\bullet}=q_{i}+\sum_{j<i} p_{j}$
For all $0 \leq i<k, t_{i}^{-}$is the reverse transition of t_{i}
For all $0 \leq i<k, m_{0}\left(p_{i}\right)=1$ and $m_{0}\left(q_{i}\right)=0$
A 3-bit counter (without the reverse transitions)

The bag $p_{i}+\sum_{j<i} q_{j}$ (resp. $q_{i}+\sum_{j<i} p_{j}$) has for witness:

$$
p_{i}+\sum_{j>i} 2^{j-i-1} p_{j}\left(\text { resp. } q_{i}+\sum_{j>i} 2^{j-i-1} q_{j}\right)
$$

Synchronizing Two Counters

Places $g o$ and $g o^{\prime}$ synchronize the two counters in such a way that: either count $=$ count or count $^{\prime}=$ count -1 .

The bags are enlarged with place $g o$ or $g o^{\prime}$.

The witnesses are unchanged.

Handling the Existential Variables

Between the firing of t_{i} and $t_{i}^{\prime}(i \geq 1)$ which updates x_{i}, \ldots, x_{1}, the following subnet allows to update y_{i}, \ldots, y_{1}.

The bags of the counter subnet are enlarged with places u_{i} and their witnesses remain the same.

The new bag $y_{i}+u_{i}\left(\right.$ resp. $\left.n y_{i}+u_{i}\right)$ has for witness $y_{i}\left(\right.$ resp. $\left.n y_{i}\right)$.

Checking a Clause

It consists to choose literal $l_{j, k}$ that proves the truth of clause C_{j}.

The bag mutex $_{j}+\ell_{j, k}\left(\right.$ resp. success $\left.{ }_{j}+n \ell_{j, k}\right)$ has for witness $-n \ell_{j, k}$ (resp. $n \ell_{j, k}$).

Synchronizing the Clauses and the Literals

In order to set bit 0
of the first counter ($\operatorname{transition} t_{0}$) to 1 , all clauses must be proved.

The literals are synchronized with the variables (the initial marking is chosen accordingly).

The bags are enlarged but the witnesses are unchanged. When literal $l_{j, k}$ proves clause C_{j} (place $n l_{j, k}$ marked) the value of the corresponding variable cannot be changed.

Plan

(1) Context and motivation
(2) Synthesis of product-form Petri nets
(3) Complexity of product-form Petri net problems

4 A new subclass of product-form Petri nets

Ordered Π-nets

An ordered Π-net is a set of strongly connected state machines $\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}$ with additional edges where:

- transitions of \mathcal{M}_{i+1} are only connected to $P_{i+1} \cup P_{i}$ (with at least an edge between \mathcal{M}_{i+1} and \mathcal{M}_{i}).
- $\mathcal{M}_{i+1} \cup \mathcal{M}_{i}$ is a Π-net with resource graph isomorphic to the disjoint unions ot the two machines

There exists a witness for every bag which can be computed inductively from higher to lower levels. So ordered Π-nets are Π^{2}-nets.

Linear Invariants of Ordered П-nets

In ordered Π-nets, there is a basis of linear invariants

- whose cardinality is n, the number of state machines,
- obtained by summing the witnesses per state machine.

Example $\left(m\left(P_{i}\right)=\sum_{p \in P_{i}} m(p)\right)$

$$
\begin{aligned}
& m\left(P_{3}\right)=3 \\
& m\left(P_{2}\right)-\left(2 m\left(p_{3}\right)+m\left(q_{3}\right)\right)=-3 \\
& m\left(P_{1}\right)-\left(\left(2 m\left(p_{2}\right)+2 m\left(q_{2}\right)+m\left(r_{2}\right)\right)-\left(4 m\left(p_{3}\right)+2 m\left(q_{3}\right)\right)\right)=10
\end{aligned}
$$

Π^{3}-nets: Potentials

Potential of a place $p \in \mathcal{M}_{i+1}$

Let $t \in T_{i+1}$ such that $p \in t^{\bullet}$, then the potential of p is the number of tokens produced by t in \mathcal{M}_{i} (i.e. $\left|t^{\bullet} \cap P_{i}\right|$).

A Π^{3}-net is an ordered Π-net where transitions of \mathcal{M}_{i+1} are only connected to places of \mathcal{M}_{i} with maximal potential.

Reachability in Π^{3}-nets: Spurious Markings

The set of markings fulfilling the invariants is a superset of reachable markings. In nets, a spurious marking is an unreachable marking fulfilling the invariants.
Π^{3}-nets admit spurious markings (e.g. $m=3 q_{3}+4 p_{1}$).

Liveness: a Polynomial Time Characterization (1)

A net is live if for all reachable marking m and transition t, there exists a marking m_{t} reachable from m and where t is fireable.

The i-minimal marked potential of a marking $m, \varphi_{i}(m)$, is the minimal potential of marked places of P_{i}.

$\varphi_{3}(m)=0 \quad \varphi_{2}(m)=1$

$$
\varphi_{3}(m)=1 \quad \varphi_{2}(m)=2
$$

Liveness: a Polynomial Time Characterization (2)

Theorem

Let \mathcal{N} be a Π^{3}-net. Then a marking m is live if and only if:

$$
\mathcal{M}_{n} \text { is marked (i.e. } m\left(P_{n}\right)>0 \text {) and } \forall 1<i \leq n m\left(P_{i-1}\right) \geq \varphi_{i}(m)
$$

(Only if) $m\left(P_{n}\right)=0 \Rightarrow \mathcal{M}_{n}$ dead. $\exists 1<i \leq n m\left(P_{i-1}\right)<\varphi_{i}(m) \Rightarrow \mathcal{M}_{i}$ dead.
(If, sketch) In any \mathcal{M}_{i}, a token can be moved from one place to another place without moving the other tokens in $\bigcup_{j \geq i} \mathcal{M}_{j}$.

$$
\varphi_{3}(m)=0 \leq 3 \quad \varphi_{2}(m)=1 \leq 4
$$

$$
\varphi_{3}(m)=1>0 \quad \varphi_{2}(m)=2 \leq 4
$$

Reachability: a Polynomial Time Characterization

Theorem

Let $\left(\mathcal{N}, m_{0}\right)$ be a live Π^{3}-net. Then a marking m is reachable if and only if: it fulfills the invariants and (\mathcal{N}, m) is live

Sketch of Proof

Let m^{*} be a marking fulfilling the invariants and where marked places of any \mathcal{M}_{i} have maximal potential.

Then m^{*} is reachable from m_{0} (using the proof of liveness).

Then any live m fulfilling the invariants is reachable from m_{0} (using weak reversibility of Π-nets).

Recurrence Equations for the Normalising Constant (1)

Places of $P_{i}=\left\{p_{i 1}, \ldots, p_{i k_{i}}\right\}$ are ordered by increasing potential.
v_{i} is the flow vector defining the linear invariant related to \mathcal{M}_{i}.
Let $E\left(i, j, c_{1}, \ldots, c_{i}\right)$ be the set of markings such that:

- $\mathcal{M}_{n}, \ldots, \mathcal{M}_{i+1}$ are unmarked and places $p_{i(j+1)}, \ldots, p_{i k_{i}}$ are unmarked.
- $\forall 1 \leq s \leq i v_{s} \cdot m=c_{s}$
- $c_{i}>0$
- m is live in $\mathcal{M}_{1} \cup \ldots \cup \mathcal{M}_{i}$

Then:

- If $a<c_{i}$ and $j \geq 2$ then $E\left(i, j, c_{1}, \ldots, c_{i}\right) \cap\left\{m \mid m\left(p_{i j}\right)=a\right\}$ $=\left\{m+a p_{i j} \mid m \in E\left(i, j-1, c_{1}-a v_{1}\left(p_{i j}\right), \ldots, c_{i}-a v_{i}\left(p_{i j}\right)\right)\right\}$
- If $i>1$ and $c_{i-1}>c_{i} v_{i-1}\left(p_{i j}\right)$ then $E\left(i, j, c_{1}, \ldots, c_{i}\right) \cap\left\{m \mid m\left(p_{i j}\right)=c_{i}\right\}$ $=\left\{m+c_{i} p_{i j} \mid m \in E\left(i-1, k_{i-1}, c_{1}-c_{i} v_{1}\left(p_{i j}\right), \ldots, c_{i-1}-c_{i} v_{i-1}\left(p_{i j}\right)\right)\right\}$
- If $i>1$ and $c_{i-1} \leq c_{i} v_{i-1}\left(p_{i j}\right)$ then $E\left(i, j, c_{1}, \ldots, c_{i}\right) \cap\left\{m \mid m\left(p_{i j}\right)=c_{i}\right\}=\emptyset$ Observation: This result is based on a behavioural analysis.

Recurrence Equations for the Normalising Constant (2)

Let us consider:

- the "relative" product-form distribution as $\pi_{r}(m)=\prod u_{i j}^{m\left(p_{i j}\right)}$
- when $c_{i}>0$, the normalising constant

$$
G\left(i, j, c_{1}, \ldots, c_{i}\right)=\sum_{m \in E\left(i, j, c_{1}, \ldots, c_{i}\right)} \pi_{r}(m)
$$

- when $c_{i} \leq 0, G\left(i, j, c_{1}, \ldots, c_{i}\right)=0$

Then (for $i \geq 2$ and $j \geq 2$):

$$
\begin{aligned}
& G\left(i, j, c_{1}, \ldots, c_{i}\right)=\sum_{\nu=0}^{c_{i}-1} u_{i j}^{\nu} G\left(i, j-1, c_{1}-\nu v_{1}\left(p_{i j}\right), \ldots, c_{i}-\nu\right) \\
& \quad+u_{i j}^{c_{i}} G\left(i-1, k_{i-1}, c_{1}-c_{i} v_{1}\left(p_{i j}\right), \ldots, c_{i-1}-c_{i} v_{i-1}\left(p_{i j}\right)\right)
\end{aligned}
$$

Observation:

The c_{j} 's may be negative but their absolute value is bounded by some constant.

Conclusion and Perspectives

Contributions

- Synthesis rules for Π^{2}-nets
- Characterization of the complexity of qualitative problems for Π^{2}-nets
- Introduction of Π^{3}-nets with efficient qualitative and quantitative analysis

Perspectives

- Developing or extending a tool (like GreatSPN)
- Extending the set of rules and specializing them for Π^{3}-nets
- Proving EXPSPACE-completeness for reachability of Π^{2}-nets
- Handling unbounded nets

