LTL model checking using Generalized Testing

Automata

Ala Eddine BEN SALEM

LRDE/LIP6

12 October 2012

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

o Automata-Theoretic Approach to Model Checking
9 Automata-Theoretic Approach to Model Checking

e Comparison of three approaches
@ TGBA: Transition-based Generalized Biichi Automata
@ BA: Blchi Automata
@ TA: Testing Automata (only stuttering-insensitive
languages)

Q The problem of the second pass in TA approach

e New automata to avoid the second pass
@ Single-pass Testing Automata (STA)
@ TGTA: Transition-based Generalized Testing Automata

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Automata-Theoretic Approach to Model Checking

Model
M

LTL formula ¢

M =
or
conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Automata-Theoretic Approach to Model Checking

Model
M

LTL formula ¢

LTL to w-automaton
translation

Negated formula
automaton A-,

On the fly
State-space generation

State-space
automaton
Au

M =
or
conter-example

Ala Eddine BEN del checking using Generalized Testing Automata

Automata-Theoretic Approach to Model Checking

Model
M

LTL formula ¢

LTL to w-automaton
translation

Negated formula
automaton A-,

On the fly
State-space generation

State-space
automaton
Au

Synchronized product

L(Au® A-y) =

Z(Au) N Z(A-,)
w

Product Automaton
Ay ® AW,

M= ¢
or
conter-example

Ala Eddine BEN del checking using Generalized Testing Automata

Automata-Theoretic Approach to Model Checking

Model
M

On the fly
State-space generation

State-space
automaton
Au

LTL formula ¢

LTL to w-automaton
translation

Negated formula
automaton A-,

Synchronized product

L(Au® A-y) =

Z(Au) N Z(A-,)
w

Product Automaton
Ay ® AW,

Emptiness check
LAn®AL) 20

M= ¢
or
conter-example

Ala Eddine BEN del checking using Generalized Testing Automata

Automata-Theoretic Approach to Model Checking

M

Model

LTL formula ¢

State-space generation

automat
Au

Ala Eddine BEN

State-space

LTL to w-automaton
translation

on

Automaton A-,

Synchronized product

ZL(Au® Ay) =

ZL(Au) N Z(A-,)
w

Product Automaton
Ay ® A—w

Emptiness check
LAy ®AL) =0

M= e
or
conter-example

There are different
types of Automata:

@ TGBA: Transition-based
Generalized Bichi
Automata

@ BA: Bichi Automata

@ TA: Testing Automata
(stuttering-insensitive)

ing Generalized Testing Automata

Approach 1: TGBA (Transition-based Generalized Biichi Automata)

TGBA for the LTL property ¢ = GF aA GF b (Weak-fairness)

ab

@ Let AP = the set of atomic proposition.
@ A TGBA over the alphabet K = 24P is a tuple (S, I, R, F):
e Sis finite set of states,
e | C Sis the set of initial states,
e F is afinite set of acceptance conditions,
@ R C S x 2K x 2F x Sis the transition relation.
@ An infinite run of a TGBA is accepting if it visits each
accepting condition from F (®, © ,...) infinitely often.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Approach 2: BA (Biichi Automata)
BA recognizing LTL property p = GFaAGFb

Obtained from a TGBA by degeneralization

@ Has only one acceptance condition that is state-based.
@ A BA over the alphabet K = 247 is a tuple (S, I, R, F):
e F C Sis afinite set of accepting states
e R C S x 2K x Sis the transition relation
@ An infinite run of a BA is accepting if it visits at least one
accepting state infinitely often.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Approach 3: TA (Testing Automata) / Stuttering-insensitive

TA recognizing LTL property FG p

; p
Model Execution=ppppppppp... {p} P
TA Run =001101111 ... {p} .."1‘1.)
| Stuttering transition = transition | ‘(})’ \(})I

@ Each transition (s, k, d) is labeled by a change set k = the
set of atomic propositions that change between s and d.
If s+ dthen k # ()
@ Two kinds of accepting states:
e F C Sis a set of Blchi-accepting states,
e G C Sis a set of livelock-accepting states.
@ A second way to accept an infinite run: reaches a
livelock-accepting state and from that point only stuttering.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Preliminary work: Experimental comparison of the

three approaches

Hypothesis: LTL\ X formulas (stuttering-insensitive)

Experimental evaluation comparing the three approaches:
TGBA, BA and TA.

Results [Ben Salem 2011]:
@ Verified properties (complete exploration of the product):

o TA requires two-pass emptiness check
o ltis therefore better to use the TGBA approach .

@ Violated properties (partial exploration of the product):
e TA approach is the most efficient to detect counterexample

@ TGBA is more efficient than BA in all cases

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Why does TA emptiness check require two passes ?

@ Two kinds of accepting SCC: Biichi-accepting or
livelock-accepting: composed by stuttering-transitions ()

@ first pass may miss to detect livelock-accepting SCCs
(depending on order to explore the transitions of (3, 1))

Product between a model and a TA of (FGp). The red
SCC is livelock-accepting.

@ Problem: mixing of non-stuttering and stuttering transitions
in the same SCC (which contains livelock-accepting states)

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

New automata to avoid the second pass

labeling transitions Reductionofy ~ TA |l add artificial , STA !
BA|——: —{ 0-TA —] s rr———]
with “change sets transitions () , (2 passes) ,, livelock state | (one pass) ;

degeneralize

labeling transitions Reductionof; TGTA !
TGBA |—— A O-TGTAF——n]
with “change sets transitions () , (one pass) ,

@ Single-pass Testing Automata (STA):
e a transformation of TA that never requires a second pass
e add an artificial livelock state (that captures all livelock runs
during the first pass)
© Transition-based Generalized Testing Automata (TGTA):
e new automaton that combines benefits from TA and TGBA
@ no two-pass emptiness check (unlike TA)
e no artificial state added (unlike STA)

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Single-pass Testing Automata (STA)

We transform a TA into a STA by:
@ adding a unique livelock-accepting state g and

@ adding a transition (s, k, g) for any transition (s, k, s’) that goes
into a livelock-accepting state s’ in TA

-p P P -p p
o] l {p}
/” h \\| 'I" - ‘\I
] i " f,," {p} 0.0
{p} {p}

Transfomation of TA (F G p) into STA

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Single-pass Testing Automata (STA)

We transform a TA into a STA by:
@ adding a unique livelock-accepting state g and

@ adding a transition (s, k, g) for any transition (s, k, s’) that goes
into a livelock-accepting state s’ in TA

Impact of STA on the product: single-pass emptiness check

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

STA optimization

During the TA to STA transformation:
@ don'’t add transition (s, k, g) for transition (s, k, ') where s’
is both livelock and Bichi accepting,
@ because in the product, any SCC containing s’ is accepting

{b}

Transformation of TA recognizing (aU G b) into optimized STA.
The state 4 is both livelock and Buchi accepting

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

TGTA: Transition-based Generalized Testing Automata

TGTA: new automaton that combines ideas from TGBA and TA:

@ From TGBA:
e Transition-based generalized acceptance conditions.
@ A one-pass emptiness-check (the same algorithm)
@ From TA:
e Labeling transitions with change sets.
o Reduction of transitions () (but without adding livelock)

TGTA of (aUGD) :

ab, ab

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a
TA reduction).

@

Reduction of stuttering-transitions in TA.

| S
\\ 4 \)
S wSn &

’I I
N

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a
TA reduction).

k

Reduction of stuttering-transitions in TGTA.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Experimental evaluation of TGTA against TGBA

1E+08

[violated o
verified

1E+07 |
1E+06 |
1E+05 |

1E+04

Number of transitions explored by the emptiness check of TGTA
against TGBA. Axes in logarithmic scale

@ Verified properties (green crosses): TGTA is more efficient
@ Violated properties (black circles): harder to interpret

Ala Eddine BEN SALEM odel checking using Generalized Testing Automata

Experimental evaluation of TGTA against TA

1E+08

1E+07 |

1E+06 |

TGTA

1E+05 |

1E+04 |

Number of transitions explored by the emptiness check of TGTA
against TA. (Axes in logarithmic scale)

@ Verified properties: TGTA more efficient, because TA requires
two-pass

@ Violated properties: same problem as for TGTA against TGBA

Ala Eddine BEN SALEM odel checking using Generalized Testing Automata

Conclusion

@ We improved the model cheking of stuttering-insensitive
properties

@ with some contributions: enhancing TA emtiness check,
proposing STA and TGTA

@ Our benchmarks show that TGTA outperform TA and
TGBA
We plan additional work to:
@ enable symbolic model checking with TGTA
@ provide direct conversion of LTL to TGTA
@ combine partial order reduction with TGTA

Questions

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

	Automata-Theoretic Approach to Model Checking
	Automata-Theoretic Approach to Model Checking
	Comparison of three approaches
	TGBA: Transition-based Generalized Büchi Automata
	BA: Büchi Automata
	TA: Testing Automata (only stuttering-insensitive languages)

	The problem of the second pass in TA approach
	New automata to avoid the second pass
	Single-pass Testing Automata (STA)
	TGTA: Transition-based Generalized Testing Automata

