LTL model checking using Generalized Testing Automata

Ala Eddine BEN SALEM

LRDE/LIP6

12 October 2012

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Outline

- Automata-Theoretic Approach to Model Checking
- 2 Automata-Theoretic Approach to Model Checking
- 3 Comparison of three approaches
 - TGBA: Transition-based Generalized Büchi Automata
 - BA: Büchi Automata
 - TA: Testing Automata (only stuttering-insensitive languages)
- 4 The problem of the second pass in TA approach
- 5 New automata to avoid the second pass
 - Single-pass Testing Automata (STA)
 - TGTA: Transition-based Generalized Testing Automata

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Approach 1: TGBA (Transition-based Generalized Büchi Automata)

TGBA for the LTL property $\varphi = GFa \wedge GFb$ (Weak-fairness)

• Let *AP* = the set of *atomic proposition*.

• A TGBA over the alphabet $K = 2^{AP}$ is a tuple $\langle S, I, R, F \rangle$:

- S is finite set of states,
- $I \subseteq S$ is the set of initial states,
- F is a finite set of acceptance conditions,
- $R \subseteq S \times 2^K \times 2^F \times S$ is the transition relation.
- An infinite run of a TGBA is accepting if it visits each accepting condition from F (●, ○,...) infinitely often.

Approach 2: BA (Büchi Automata)

BA recognizing LTL property $\varphi = GFa \wedge GFb$

Obtained from a TGBA by degeneralization

- Has only one acceptance condition that is state-based.
- A BA over the alphabet $K = 2^{AP}$ is a tuple $\langle S, I, R, F \rangle$:
 - *F* ⊆ *S* is a finite set of accepting states
 - $R \subseteq S \times 2^K \times S$ is the transition relation
- An infinite run of a BA is accepting if it visits at least one accepting state infinitely often.

TA recognizing LTL property FGp

Model Execution =
$$\bar{p} \bar{p} p p \bar{p} p p p \dots$$

TA Run = 0 0 1 1 0 1 1 1 1 ...

Stuttering transition \equiv transition \emptyset

- Each transition (s, k, d) is labeled by a change set k = the set of atomic propositions that change between s and d. If s ≠ d then k ≠ Ø
- Two kinds of accepting states:
 - $F \subseteq S$ is a set of Büchi-accepting states,
 - $G \subseteq S$ is a set of livelock-accepting states.
- A second way to accept an infinite run: reaches a livelock-accepting state and from that point only stuttering.

{**p**}

{*p*

Preliminary work: Experimental comparison of the three approaches

Hypothesis: LTL\ X formulas (*stuttering-insensitive*)

Experimental evaluation comparing the three approaches: TGBA, BA and TA.

Results [Ben Salem 2011]:

- Verified properties (complete exploration of the product):
 - TA requires two-pass emptiness check
 - It is therefore better to use the TGBA approach .
- Violated properties (partial exploration of the product):
 - TA approach is the most efficient to detect counterexample
- TGBA is more efficient than BA in all cases

Why does TA emptiness check require two passes ?

- Two kinds of accepting SCC: Büchi-accepting or livelock-accepting: composed by stuttering-transitions Ø
- first pass may miss to detect livelock-accepting SCCs (depending on order to explore the transitions of (3, 1))

Product between a model and a TA of (FGp). The red SCC is livelock-accepting.

 Problem: mixing of non-stuttering and stuttering transitions in the same SCC (which contains livelock-accepting states)

New automata to avoid the second pass

Single-pass Testing Automata (STA):

- a transformation of TA that never requires a second pass
- add an artificial livelock state (that captures all livelock runs during the first pass)
- Iransition-based Generalized Testing Automata (TGTA):
 - new automaton that combines benefits from TA and TGBA
 - no two-pass emptiness check (unlike TA)
 - no artificial state added (unlike STA)

Single-pass Testing Automata (STA)

We transform a TA into a STA by:

- adding a unique livelock-accepting state g and
- adding a transition (s, k, g) for any transition (s, k, s') that goes into a livelock-accepting state s' in TA

Single-pass Testing Automata (STA)

We transform a TA into a STA by:

- adding a unique livelock-accepting state g and
- adding a transition (s, k, g) for any transition (s, k, s') that goes into a livelock-accepting state s' in TA

Impact of STA on the product: single-pass emptiness check

STA optimization

During the TA to STA transformation:

- don't add transition (s, k, g) for transition (s, k, s') where s' is both livelock and Büchi accepting,
- because in the product, any SCC containing s' is accepting

Transformation of TA recognizing $(a \cup G b)$ into optimized STA. The state 4 is both livelock and Büchi accepting

TGTA: Transition-based Generalized Testing Automata

TGTA: new automaton that combines ideas from TGBA and TA:

- From TGBA:
 - Transition-based generalized acceptance conditions.
 - A one-pass emptiness-check (the same algorithm)
- From TA:
 - Labeling transitions with change sets.
 - Reduction of transitions Ø (but without adding livelock)

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a TA reduction).

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a TA reduction).

Reduction of stuttering-transitions in TA.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata

Experimental evaluation of TGTA against TGBA

Number of transitions explored by the emptiness check of TGTA against TGBA. Axes in logarithmic scale

- Verified properties (green crosses): TGTA is more efficient
- Violated properties (black circles): harder to interpret

Experimental evaluation of TGTA against TA

Number of transitions explored by the emptiness check of TGTA against TA. (Axes in logarithmic scale)

- Verified properties: TGTA more efficient, because TA requires two-pass
- Violated properties: same problem as for TGTA against TGBA

Conclusion

- We improved the model cheking of stuttering-insensitive properties
- with some contributions: enhancing TA emtiness check, proposing STA and TGTA
- Our benchmarks show that TGTA outperform TA and TGBA

We plan additional work to:

- enable symbolic model checking with TGTA
- provide direct conversion of LTL to TGTA
- combine partial order reduction with TGTA

Questions