
LTL model checking using Generalized Testing
Automata

Ala Eddine BEN SALEM

LRDE/LIP6

12 October 2012

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 1

Outline

1 Automata-Theoretic Approach to Model Checking

2 Automata-Theoretic Approach to Model Checking

3 Comparison of three approaches
TGBA: Transition-based Generalized Büchi Automata
BA: Büchi Automata
TA: Testing Automata (only stuttering-insensitive
languages)

4 The problem of the second pass in TA approach

5 New automata to avoid the second pass
Single-pass Testing Automata (STA)
TGTA: Transition-based Generalized Testing Automata

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 2

Automata-Theoretic Approach to Model Checking

Model
M

LTL formula ϕ

M |= ϕ
or

conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 3

Automata-Theoretic Approach to Model Checking

Model
M

On the fly
State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Negated formula
automaton A¬ϕ

M |= ϕ
or

conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 4

Automata-Theoretic Approach to Model Checking

Model
M

On the fly
State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Negated formula
automaton A¬ϕ

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM) ∩ L (A¬ϕ)

Product Automaton
AM ⊗ A¬ϕ

M |= ϕ
or

conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 5

Automata-Theoretic Approach to Model Checking

Model
M

On the fly
State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Negated formula
automaton A¬ϕ

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM) ∩ L (A¬ϕ)

Product Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM ⊗ A¬ϕ)

?
= ∅

M |= ϕ
or

conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 6

Automata-Theoretic Approach to Model Checking

There are different
types of Automata:

TGBA: Transition-based
Generalized Büchi
Automata
BA: Büchi Automata
TA: Testing Automata
(stuttering-insensitive)

Model
M

State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Automaton A¬ϕ
¬TGBA BA TA

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM) ∩ L (A¬ϕ)

Product Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM ⊗ A¬ϕ)

?
= ∅

M |= ϕ
or

conter-example

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 7

Approach 1: TGBA (Transition-based Generalized Büchi Automata)

TGBA for the LTL property ϕ = G F a ∧G F b (Weak-fairness)

āb̄

āb

ab

ab̄

Let AP = the set of atomic proposition.
A TGBA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

S is finite set of states,
I ⊆ S is the set of initial states,
F is a finite set of acceptance conditions,
R ⊆ S × 2K × 2F × S is the transition relation.

An infinite run of a TGBA is accepting if it visits each
accepting condition from F (, ,. . .) infinitely often.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 8

Approach 2: BA (Büchi Automata)

BA recognizing LTL property ϕ = G F a ∧G F b

ab

ab̄, āb̄
āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

Obtained from a TGBA by degeneralization

Has only one acceptance condition that is state-based.
A BA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

F ⊆ S is a finite set of accepting states
R ⊆ S × 2K × S is the transition relation

An infinite run of a BA is accepting if it visits at least one
accepting state infinitely often.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 9

Approach 3: TA (Testing Automata) / stuttering-insensitive

TA recognizing LTL property F G p

Model Execution = p̄ p̄ p p p̄ p p p p . . .

TA Run = 0 0 1 1 0 1 1 1 1 . . .

Stuttering transition ≡ transition ∅

0 1

{p}

{p}

p̄ p

∅∅

Each transition (s, k ,d) is labeled by a change set k = the
set of atomic propositions that change between s and d .
If s 6= d then k 6= ∅
Two kinds of accepting states:

F ⊆ S is a set of Büchi-accepting states,
G ⊆ S is a set of livelock-accepting states.

A second way to accept an infinite run: reaches a
livelock-accepting state and from that point only stuttering.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 10

Preliminary work: Experimental comparison of the
three approaches

Hypothesis: LTL\X formulas (stuttering-insensitive)

Experimental evaluation comparing the three approaches:
TGBA, BA and TA.

Results [Ben Salem 2011]:
Verified properties (complete exploration of the product):

TA requires two-pass emptiness check
It is therefore better to use the TGBA approach .

Violated properties (partial exploration of the product):
TA approach is the most efficient to detect counterexample

TGBA is more efficient than BA in all cases

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 11

Why does TA emptiness check require two passes ?

Two kinds of accepting SCC: Büchi-accepting or
livelock-accepting: composed by stuttering-transitions ∅
first pass may miss to detect livelock-accepting SCCs
(depending on order to explore the transitions of (3,1))

0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}

Product between a model and a TA of (F G p). The red
SCC is livelock-accepting.

Problem: mixing of non-stuttering and stuttering transitions
in the same SCC (which contains livelock-accepting states)

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 12

New automata to avoid the second pass

BA

TGBA

∅-TA
TA

(2 passes)

STA
(one pass)

∅-TGTA
TGTA

(one pass)

labeling transitions

with “change sets”
Reduction of
transitions ∅

labeling transitions

with “change sets”

add artificial
livelock state

Reduction of
transitions ∅

degeneralize

1 Single-pass Testing Automata (STA):
a transformation of TA that never requires a second pass
add an artificial livelock state (that captures all livelock runs
during the first pass)

2 Transition-based Generalized Testing Automata (TGTA):
new automaton that combines benefits from TA and TGBA
no two-pass emptiness check (unlike TA)
no artificial state added (unlike STA)

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 13

Single-pass Testing Automata (STA)
We transform a TA into a STA by:

adding a unique livelock-accepting state g and

adding a transition (s, k ,g) for any transition (s, k , s′) that goes
into a livelock-accepting state s′ in TA

0

¬p¬p

1

pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
{p}

Transfomation of TA (F G p) into STA

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 14

Single-pass Testing Automata (STA)
We transform a TA into a STA by:

adding a unique livelock-accepting state g and

adding a transition (s, k ,g) for any transition (s, k , s′) that goes
into a livelock-accepting state s′ in TA

0

¬p¬p

1

pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
{p}

0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}
0,0¬p 3,1

2,11,0

¬p

3,g

2,g

∅

{p}{p}

∅∅

{p}

∅∅

Impact of STA on the product: single-pass emptiness check

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 15

STA optimization

During the TA to STA transformation:
don’t add transition (s, k ,g) for transition (s, k , s′) where s′

is both livelock and Büchi accepting,
because in the product, any SCC containing s′ is accepting

1ab̄

2ab

3āb

4

{b}

{a,b}

{b}

{a}

{a}

{a}

{a}

1ab̄

2ab

3āb

4

g ab, āb

{b}

{a,b}

{b}

{a,b}

{b}

{a}
{a}

{a}

{a}

{a}

Transformation of TA recognizing (a U G b) into optimized STA.
The state 4 is both livelock and Büchi accepting

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 16

TGTA: Transition-based Generalized Testing Automata

TGTA: new automaton that combines ideas from TGBA and TA:
From TGBA:

Transition-based generalized acceptance conditions.
A one-pass emptiness-check (the same algorithm)

From TA:
Labeling transitions with change sets.
Reduction of transitions ∅ (but without adding livelock)

TGTA of (a U G b) :

1ab̄

2ab

3āb

4 ab, āb

{b}

{b}
∅

{a,b}

{a,b}
{b}

{a}

{a}

∅

{a}

∅

{a}

∅

[

] TGTA for a U G b, with F = { }.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 17

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a
TA reduction).

s s0 · · · sn

sF...

. . .k ∅ ∅
∅

∅

∅

s s0 sn

...

. . .k

Reduction of stuttering-transitions in TA.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 18

Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a
TA reduction).

s s0 · · · sn

sF...

. . .k ∅ ∅
∅

∅

∅

s s0 sn

...

. . .k

Reduction of stuttering-transitions in TA.

s s0 · · · sn

...

. . .k ∅ ∅
∅

∅

∅
s s0 sn

...

. . .k

k

∅

Reduction of stuttering-transitions in TGTA.

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 19

Experimental evaluation of TGTA against TGBA

1E+04

1E+05

1E+06

1E+07

1E+08

1E
+04

1E
+05

1E
+06

1E
+07

1E
+08

T
G

T
A

TGBA

violated
verified

Number of transitions explored by the emptiness check of TGTA
against TGBA. Axes in logarithmic scale

Verified properties (green crosses): TGTA is more efficient

Violated properties (black circles): harder to interpret

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 20

Experimental evaluation of TGTA against TA

1E+04

1E+05

1E+06

1E+07

1E+08

1E
+04

1E
+05

1E
+06

1E
+07

1E
+08

T
G

T
A

TA

violated
verified

Number of transitions explored by the emptiness check of TGTA
against TA. (Axes in logarithmic scale)

Verified properties: TGTA more efficient, because TA requires
two-pass

Violated properties: same problem as for TGTA against TGBA

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 21

Conclusion

We improved the model cheking of stuttering-insensitive
properties
with some contributions: enhancing TA emtiness check,
proposing STA and TGTA
Our benchmarks show that TGTA outperform TA and
TGBA

We plan additional work to:
enable symbolic model checking with TGTA
provide direct conversion of LTL to TGTA
combine partial order reduction with TGTA

Questions

Ala Eddine BEN SALEM LTL model checking using Generalized Testing Automata 22

	Automata-Theoretic Approach to Model Checking
	Automata-Theoretic Approach to Model Checking
	Comparison of three approaches
	TGBA: Transition-based Generalized Büchi Automata
	BA: Büchi Automata
	TA: Testing Automata (only stuttering-insensitive languages)

	The problem of the second pass in TA approach
	New automata to avoid the second pass
	Single-pass Testing Automata (STA)
	TGTA: Transition-based Generalized Testing Automata

