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Automata-Theoretic Approach to Model Checking
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Automata-Theoretic Approach to Model Checking

There are different
types of Automata:

TGBA: Transition-based
Generalized Büchi
Automata
BA: Büchi Automata
TA: Testing Automata
(stuttering-insensitive)
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Approach 1: TGBA (Transition-based Generalized Büchi Automata)

TGBA for the LTL property ϕ = G F a ∧G F b (Weak-fairness)

āb̄

āb

ab

ab̄

Let AP = the set of atomic proposition.
A TGBA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

S is finite set of states,
I ⊆ S is the set of initial states,
F is a finite set of acceptance conditions,
R ⊆ S × 2K × 2F × S is the transition relation.

An infinite run of a TGBA is accepting if it visits each
accepting condition from F ( , ,. . . ) infinitely often.
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Approach 2: BA (Büchi Automata)

BA recognizing LTL property ϕ = G F a ∧G F b

ab

ab̄, āb̄
āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

Obtained from a TGBA by degeneralization

Has only one acceptance condition that is state-based.
A BA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

F ⊆ S is a finite set of accepting states
R ⊆ S × 2K × S is the transition relation

An infinite run of a BA is accepting if it visits at least one
accepting state infinitely often.
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Approach 3: TA (Testing Automata) / stuttering-insensitive

TA recognizing LTL property F G p

Model Execution = p̄ p̄ p p p̄ p p p p . . .

TA Run = 0 0 1 1 0 1 1 1 1 . . .

Stuttering transition ≡ transition ∅

0 1

{p}

{p}

p̄ p

∅∅

Each transition (s, k ,d) is labeled by a change set k = the
set of atomic propositions that change between s and d .
If s 6= d then k 6= ∅
Two kinds of accepting states:

F ⊆ S is a set of Büchi-accepting states,
G ⊆ S is a set of livelock-accepting states.

A second way to accept an infinite run: reaches a
livelock-accepting state and from that point only stuttering.
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Preliminary work: Experimental comparison of the
three approaches

Hypothesis: LTL\X formulas (stuttering-insensitive)

Experimental evaluation comparing the three approaches:
TGBA, BA and TA.

Results [Ben Salem 2011]:
Verified properties (complete exploration of the product):

TA requires two-pass emptiness check
It is therefore better to use the TGBA approach .

Violated properties (partial exploration of the product):
TA approach is the most efficient to detect counterexample

TGBA is more efficient than BA in all cases
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Why does TA emptiness check require two passes ?

Two kinds of accepting SCC: Büchi-accepting or
livelock-accepting: composed by stuttering-transitions ∅
first pass may miss to detect livelock-accepting SCCs
(depending on order to explore the transitions of (3,1))

0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}

Product between a model and a TA of (F G p). The red
SCC is livelock-accepting.

Problem: mixing of non-stuttering and stuttering transitions
in the same SCC (which contains livelock-accepting states)
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New automata to avoid the second pass

BA

TGBA

∅-TA
TA

(2 passes)

STA
(one pass)

∅-TGTA
TGTA

(one pass)

labeling transitions

with “change sets”
Reduction of
transitions ∅

labeling transitions

with “change sets”

add artificial
livelock state

Reduction of
transitions ∅

degeneralize

1 Single-pass Testing Automata (STA):
a transformation of TA that never requires a second pass
add an artificial livelock state (that captures all livelock runs
during the first pass)

2 Transition-based Generalized Testing Automata (TGTA):
new automaton that combines benefits from TA and TGBA
no two-pass emptiness check (unlike TA)
no artificial state added (unlike STA)
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Single-pass Testing Automata (STA)
We transform a TA into a STA by:

adding a unique livelock-accepting state g and

adding a transition (s, k ,g) for any transition (s, k , s′) that goes
into a livelock-accepting state s′ in TA

0

¬p¬p

1

pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
{p}

Transfomation of TA (F G p) into STA
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0

¬p¬p
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pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
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0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}
0,0¬p 3,1

2,11,0

¬p

3,g

2,g

∅

{p}{p}

∅∅

{p}

∅∅

Impact of STA on the product: single-pass emptiness check
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STA optimization

During the TA to STA transformation:
don’t add transition (s, k ,g) for transition (s, k , s′) where s′

is both livelock and Büchi accepting,
because in the product, any SCC containing s′ is accepting

1ab̄

2ab

3āb

4

{b}

{a,b}

{b}

{a}

{a}

{a}

{a}

1ab̄

2ab

3āb

4

g ab, āb

{b}

{a,b}

{b}

{a,b}

{b}

{a}
{a}

{a}

{a}

{a}

Transformation of TA recognizing (a U G b) into optimized STA.
The state 4 is both livelock and Büchi accepting
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TGTA: Transition-based Generalized Testing Automata

TGTA: new automaton that combines ideas from TGBA and TA:
From TGBA:

Transition-based generalized acceptance conditions.
A one-pass emptiness-check (the same algorithm)

From TA:
Labeling transitions with change sets.
Reduction of transitions ∅ (but without adding livelock)

TGTA of (a U G b) :

1ab̄

2ab

3āb

4 ab, āb

{b}

{b}
∅

{a,b}

{a,b}
{b}

{a}

{a}

∅

{a}

∅

{a}

∅

[

] TGTA for a U G b, with F = { }.
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Reduction of stuttering-transitions in TGTA versus TA

TGTA reduction does not add livelock-accepting states (unlike a
TA reduction).

s s0 · · · sn

sF...

. . .k ∅ ∅
∅

∅

∅

s s0 sn

...

. . .k

Reduction of stuttering-transitions in TA.
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Reduction of stuttering-transitions in TGTA.
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Experimental evaluation of TGTA against TGBA
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verified

Number of transitions explored by the emptiness check of TGTA
against TGBA. Axes in logarithmic scale

Verified properties (green crosses): TGTA is more efficient

Violated properties (black circles): harder to interpret
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Experimental evaluation of TGTA against TA
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Number of transitions explored by the emptiness check of TGTA
against TA. (Axes in logarithmic scale)

Verified properties: TGTA more efficient, because TA requires
two-pass

Violated properties: same problem as for TGTA against TGBA
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Conclusion

We improved the model cheking of stuttering-insensitive
properties
with some contributions: enhancing TA emtiness check,
proposing STA and TGTA
Our benchmarks show that TGTA outperform TA and
TGBA

We plan additional work to:
enable symbolic model checking with TGTA
provide direct conversion of LTL to TGTA
combine partial order reduction with TGTA

Questions
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