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Q A 10 minutes introduction to Real-Time scheduling
9 Component-based Real-Time Systems
e Time partitioning
@ Analysis
@ Single processors
@ Distributed systems

@ Multicore
@ Formal methods

e From theory to practice

@ Conclusions and open problems
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Q A 10 minutes introduction to Real-Time scheduling
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Real-Time Systems

Most real-time systems are concurrent
@ need to handle many events with different temporal characteristics
Periodic events
@ In control systems, periodic sampling, computation of the control
algorithm, actuation
o Different events may have different periods
Aperiodic events
@ May be triggered by the external environment
@ Examples: a sensor triggers an interrupt, a packet arrives from the
network
Different events are handled by different tasks that run
concurrently
Constraints: each task instance must complete before a certain
instant (deadline)
Scheduling problem: how to interleave tasks executions so that
each task instance meets its deadline
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Task model

A task can be;:

@ periodic: has a regular structure, consisting of an infinite cycle, in
which it executes a computation and then suspends itself waiting
for the next periodic activation. An example of pthread library code
for a periodic task is the following:

void * Periodi cTask(void *argQ)

{
<initialization>
<start periodic timer, period = T>
while (cond) {
<read sensors>
<updat e out put s>;
<update state vari abl es>;
<wait next activation>;
}
}
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Periodic tasks

A periodic task 7 = (Cj, Dj, T;) is a infinite sequence of jobs
Jik = {aik, Cik dik}, Where:

ao = 0

ax = ak-1+T Vvk>0
dx = ak+Di vk>0
C = ml?x{ci,k}

@ T; is the task’s period;

@ D; is the task’s relative deadline;

@ G is the task’s worst-case execution time (WCET);
@ R is the worst-case response time

@ for the task to be schedulable, it must be R, < D;.
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Example of schedule

@ Fixed priority: the active task with the highest priority is executed
on the processor.
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Difference with Classical Scheduling problems

@ In classical scheduling problems (i.e. Job-shop)

@ Tasks are one-shot (not periodic)

@ No timing constraints

@ Goal is to minimise completion time (the make-span problem), or
some cost function.

@ Resources can be complex (different machines, precedence
constraints, etc.)

@ The general form is often only solvable by Mixed-Integer Linear
Programming.

@ In real-time scheduling

@ Tasks are periodic or sporadic

@ emphasis on time constraints

@ resources are simple (single processors, uniform multiprocessors)
@ many problems can be solved in polynomial time
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Scheduling, schedulability, feasibility

@ Scheduling algorithm

@ An on-line or off-line algorithm A that, given a task set 7 decides
which tasks are executed at each instant on each processor (the
schedule o (A, T,t))
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Scheduling, schedulability, feasibility

@ Scheduling algorithm

@ An on-line or off-line algorithm A that, given a task set 7 decides
which tasks are executed at each instant on each processor (the
schedule o (A, T,t))

@ Schedulable task set

o Atask set 7T is schedulable by algorithm A iff all jobs complete
before their deadlines in the schedule (A, T, t)

@ Schedulability test

@ Given a scheduling algorithm A, and a set of tasks 7, decide if .4
will produce a feasible schedule (i.e. a schedule in which all jobs)

@ Feasibility problem

@ Given a set of tasks T, decide if it exists a scheduling algorithm 4
that produces a feasible schedule on 7.
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Schedulability test

@ One key objective of real-time analysis is to be able to know in
advance if the task set is schedulable by a certain scheduling
algorithm

@ Generate and check the schedule (hint: it is a periodic function)

@ Pro: in this case, feasibility can be reduced to a classical MILP
problem
@ Cons: NP-Hard
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Schedulability test

@ One key objective of real-time analysis is to be able to know in
advance if the task set is schedulable by a certain scheduling
algorithm

@ Generate and check the schedule (hint: it is a periodic function)

@ Pro: in this case, feasibility can be reduced to a classical MILP
problem
@ Cons: NP-Hard
@ Worst-case approach: try to identify worst-case scenario
@ Pro: feasibility in polynomial (or pseudo-polynomial) complexity
@ Cons: not quite easy to identify the worst-case
@ Cons: often, only sufficient conditions
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Schedulability tests

Consider n periodic (or sporadic) tasks with relative deadline equal to
periods, whose priorities are assigned in Rate Monotonic order. Then,

n
C.
U :Zfl < Ujp = n(2¥" - 1)
i—1

@ Uy is a decreasing function of n;
@ For large n: Uy — 0.69

n | U n | Uuw
210828 7 | 0.728
310779 8 | 0.724
410756 || 9 | 0.720
510.743 || 10 | 0.717
6| 0.734 || 11
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Dynamic priority scheduling

@ The most important dynamic priority algorithm is Earliest Deadline
First (EDF)

@ The priority of a job (instance) is inversely proportional to its
absolute deadline;

@ Example with U = 2
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Schedulability tests

Theorem (Optimality, Dertouzos '73)

If a set of jobs 7 is schedulable by an algorithm A, then it is
schedulable by EDF.
Theorem (Liu & Layland ’71)

Given a task set of periodic or sporadic tasks, with relative deadlines
equal to periods, the task set is schedulable by EDF if and only if

N
u-3
i=1

@)

o1
i

—
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A key problem

@ Scheduling experts start from a task model where the
computation times of the tasks are given
@ However, estimating WCET can be extremely difficult
@ Compute all possible paths in the code (not so difficult)
@ Under all possible values of input vectors (much more difficult), and
state variables (very difficult!)
@ For each path, take the assembly code and compute number of
cycles
@ Last step requires a precise model of the hardware platform

@ A model of the hardware instruction pipeline
@ A model of the cache memory
@ a model of other unpredictabilities (like out-of-order execution)

@ If it is not done right, large overestimation of WCET, or (even
worse!) underestimation
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Domino effect

@ In case of overhead (U > 1), in EDF we have the domino effect: it
means that all tasks miss their deadlines.

@ An example of domino effect is the following;
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Domino effect: considerations

@ FP is more predictable: only lower priority tasks miss their
deadlines! In the previous example, if we use FP:

e e b e
= e

T2

T3

T4

L >

0 2 4 6 8 10 12 14 16 18 20 22 24

@ However, it may happen that some task never executes in case of
high overload
@ EDF is more fair (all tasks are treated in the same way).
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Current research trends

@ Many different task models have been proposed

@ With precedence constraints, varying computation time,
probabilistic, shared resources, soft real-time, etc.

@ After many years, single processor problem is (almost) a closed
area of investigation

@ Multi-processor scheduling: one or two orders of magnitude more
difficult problem, still open

@ Distributed system: general problem still very difficult, but lot of
research has been done

In this talk:
@ Component-based analysis of Real-Time Systems
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9 Component-based Real-Time Systems
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Modern Real-Time Systems

Modern real-time applications can be very complex

@ Automotive software (high-end
car model)
@ Millions of lines of (low level)
code
@ up to 80 distributed nodes
@ up to 5 different networks

@ At the same time they are
safety critical
@ A single bug may
compromise human life

Problems:
@ How to analyse, certify and validate the code?
@ How to manage complexity?
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Off-line and on-line

@ Off-line:

Design
model
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Off-line and on-line

@ Off-line:
@ Write code,

Design
model

Implementation
Code
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Off-line and on-line

@ Off-line:
@ Write code,
@ estimate WCET,

Design N Task Model
model [ (timing)
Implementation
Code
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Off-line and on-line

@ Off-line:
@ Write code,
@ estimate WCET,
@ perform analysis

Design N Task Model g Scheduling N Schedule
model 7 (timing) Analysis 7 Properties
Implementation
Code
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Off-line and on-line

@ Off-line:
@ Write code,
@ estimate WCET,
@ perform analysis
@ On-line:
@ Execute task on the OS (by the scheduler)

Design N Task Model g Scheduling N Schedule
model 7 (timing) Analysis 7 Properties
Implementation OS + OSs +
Code Scheduler [l Scheduler
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Off-line and on-line

@ Off-line:
@ Write code,
@ estimate WCET,
@ perform analysis
@ On-line:
@ Execute task on the OS (by the scheduler)
@ If some WCET is underestimated, anything can happen

Design N Task Model g Scheduling N Schedule
model 7 (timing) Analysis 7 Properties
Implementation OS + OSs +
Code Scheduler [l Scheduler
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Off-line and on-line

@ Off-line:
@ Write code,
@ estimate WCET,
@ perform analysis
@ On-line:
@ Execute task on the OS (by the scheduler)
@ If some WCET is underestimated, anything can happen
@ The more complex is the system, the more difficult is to keep
analysis and execution in sync

Design N Task Model g Scheduling N Schedule
model 7 (timing) Analysis 7 Properties
Implementation OS + OSs +
Code Scheduler [l Scheduler
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Component-based design

@ Design the overall
architecture

@ as a set of smaller 4 System h

interacting components

@ Component design and
implementation

@ in modern applications,
some component is
implemented by third
parties

@ some component could be
reused from previous
projects

@ When components are
completed, do integration and
analysis
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Advantages

Simplify the design of complex distributed systems
@ system as hierarchy of components
Independent design and implementation of sub-systems
@ separation between interface and implementation
Re-use of existing and well-tested components
@ to reduce development cost
Dynamic and on-line (re-)configuration
@ substitute or upgrade a component, possibly on-line
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Component-based analysis

@ A component-based methodology should include a
component-based analysis
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Component-based analysis

@ A component-based methodology should include a
component-based analysis
@ Analysis is first done at each component level

@ This is the “local” analysis

@ The result is a (functional and non-functional) characterisation of
the properties of the component

@ For example: resource requirements of the component over time
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Component-based analysis

@ A component-based methodology should include a
component-based analysis

@ Analysis is first done at each component level

@ This is the “local” analysis

@ The result is a (functional and non-functional) characterisation of

the properties of the component

@ For example: resource requirements of the component over time
@ Then, at the global level

@ Component are integrated in the final system
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@ The result is a (functional and non-functional) characterisation of
the properties of the component

@ For example: resource requirements of the component over time

@ Then, at the global level

@ Component are integrated in the final system

@ Each component is represents by its interface, including functional
and non-functional properties (e.g., resource requirements)

@ Therefore, in global analysis we can ignore the internal details of all
components
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Component-based analysis

@ A component-based methodology should include a
component-based analysis
@ Analysis is first done at each component level

@ This is the “local” analysis

@ The result is a (functional and non-functional) characterisation of
the properties of the component

@ For example: resource requirements of the component over time

@ Then, at the global level

@ Component are integrated in the final system

@ Each component is represents by its interface, including functional
and non-functional properties (e.g., resource requirements)

@ Therefore, in global analysis we can ignore the internal details of all
components

@ Pro: simplification
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Component-based analysis

@ A component-based methodology should include a
component-based analysis
@ Analysis is first done at each component level

@ This is the “local” analysis

@ The result is a (functional and non-functional) characterisation of
the properties of the component

@ For example: resource requirements of the component over time

@ Then, at the global level
@ Component are integrated in the final system
@ Each component is represents by its interface, including functional
and non-functional properties (e.g., resource requirements)
@ Therefore, in global analysis we can ignore the internal details of all
components
@ Pro: simplification

@ Cons: we lose optimality, we may waste resources

G. Lipari (SSSA and LSV@ENS) Component-based MeFoSyLoMa 23/70



Run-time support

@ Analysis is necessary, but not sufficient to implement a
component-based system
@ We also need Run-Time Support
@ The concept of component should be supported by at the Operating
Systems (or at the Middle-ware) level
@ Component must be “isolated” from each other to avoid cross-talk
effects not caught at analysis time
@ OS should enforce isolation
@ Memory isolation (to avoid memory corruption by a bugged
component)

@ Temporal isolation (to avoid that a component uses more resources
than expected)
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9 Time partitioning
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Traditional approach to scheduling fails

Summary of objectives
@ Obijective 1: independent component analysis
@ Objective 2: system analysis using (light) abstractions

Now we see why it is impossible to achieve these objectives with a
single flat scheduler

@ (hint: complexity is high)
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Example

@ Designer can assign local priorities (no global knowledge)
@ At integration phase need to assign priorities relative to each other
@ Example: two components, two tasks each

Component C, Component C, @ pp > pzand ps > ps

=

JL
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Example

@ Designer can assign local priorities (no global knowledge)
@ At integration phase need to assign priorities relative to each other
@ Example: two components, two tasks each

Component C, Component C, @ pp > pzand ps > ps
@ Possible priority ordering:

Qp>mp>p>p

— Qp>p>p>p

=

Qp>p>p>p
Qp>p>p>p

Qp>p>p>ps
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Temporal isolation

@ Higher priority does not always mean higher importance

@ Priority is a scheduling artifact
@ For example, it could be used to maximise the probability of being
schedulable

@ Without “temporal isolation”,

@ A task that executes more than expected may cause a deadline
miss to lower priority tasks (that may belong to other components)

@ In a flat system, everything interacts with everything else
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Two-levels of scheduling

Summary of objectives
@ Objective 1: independent component analysis
@ Objective 2: system analysis using (light) abstractions
Our solution: two levels of scheduling
@ A global scheduler selects the components to execute, regardless
of their internal structure

component Cy component C,

)
g
i
g
B
g

90BBI| POPIACI]
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Two-levels of scheduling

Summary of objectives
@ Objective 1: independent component analysis
@ Objective 2: system analysis using (light) abstractions
Our solution: two levels of scheduling
@ A global scheduler selects the components to execute, regardless
of their internal structure
@ When a component is selected by the global scheduler, a local
scheduler decides which of the tasks is executing

component C; component C,

g @ g
g g
g g
8 8
2 2
2 2
3 3
Bl 5
8 8
8 8
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Global and local scheduler

@ The global scheduler partitions the resource and allocates it to the
components

@ the local scheduler assign the resource to the component threads

A(2,4) T T T T T T
8o | | | I I I
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@ Analysis
@ Single processors
@ Distributed systems
@ Multicore
@ Formal methods
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Q A 10 minutes introduction to Real-Time scheduling
e Component-based Real-Time Systems
e Time partitioning

9 Analysis
@ Single processors

e From theory to practice

@ Conclusions and open problems
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Chronology of papers

@ Problem: given a component (set of periodic threads and a local
scheduler) on a time partition, how to test its schedulability?

@ Deng and Liu, (1997) [DL97]

@ The BSS algorithm, by Lipari, Buttazzo, Baruah, Carpenter
(1998-2000) [LBOO, LCBO00, LBA98]

@ Time partitions, Feng and Mok, (2001 — 2002) [MFO1, FM02]

@ Temporal interfaces, Shin and Lee, (2003) [SL03]

@ Inverse problem: find a partition that makes the component
schedulable
@ Lipari and Bini (2003, 2005), [LB03, LB05]
@ Almeida and Pedreiras (2004) [AP04]
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Supply-bound function

The supply bound function (sbf(t))

@ it is the minimum amount of resource that the global scheduler
provides to one component in an interval of length t

@ It depends on how the resource is partitioned by the global
scheduler

i) @ Aisthe
maximum delay
(interval with no
resource)

@ «is the

| Q | | | | t provided
= B = = = bandwidth

«— P——
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Static and dynamic partitions

Static partitions:
@ The global scheduler uses TDM
@ Advantages: reduces delay, improves determinism
@ Disadvantages: rigid and unflexible

Dynamic Partitions:

@ The global scheduler uses a Resource Reservation Algorithm
(e.g. CBS, or similar)

@ Advantages: can reclaim unused bandwidth, can adapt
dynamically, useful for open systems

@ Disadvantages: may have a larger delay
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Dynamic partitions

@ The sbf(t) for CBS is as follows:

sbi(t) A=2(P-Q) «=Q/P

— A — >

N e

«— 2(P-Q) —
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Schedulability conditions

@ After characterising the sbf(t), it is possible to test schedulability
using the following properties
@ Fixed Priority Local scheduler:

@ Lehoczky test: for every task, it must exist a point t where the
required computation time does not exceed t:

i
dt e P, Z[.It_.—‘ciﬁt
I

j=1
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Schedulability conditions

@ After characterising the sbf(t), it is possible to test schedulability
using the following properties
@ Fixed Priority Local scheduler:

@ Lehoczky test: for every task, it must exist a point t where the
required computation time does not exceed t:

i
dt e P, Z[.;—‘Ciﬁt
I

j=1

@ Lehoczky test for partitions: for every task, it must exist a point t
where the required computation time does not exceed sbff(t)

Jtep Z [H G < shbf(t)

=1
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Schedulability conditions

@ Earliest Deadline First Local scheduler:

@ Demand Bound Function test: For any interval of length t the
demand bound function does not exceed t:

vt < dline(T) EI: Qt_TD'J + 1) G <t

=1 !
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Schedulability conditions

@ Earliest Deadline First Local scheduler:

@ Demand Bound Function test: For any interval of length t the
demand bound function does not exceed t:

vt < dline(T) J}; Qt_TD'J + 1) G <t

@ DBF test partitions: For interval of length t the demand bound
function does not exceed sbf(t):

vt <dline(T) Qt_T,DJ + 1) Ci < sbf(t)

i=1
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Time granularity

@ Parameter A can have a large impact on the schedulability of the
component

@ A represents the maximum period with no resource
@ Clearly, A should be less that the smaller task deadline in the
component
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Time granularity

@ Parameter A can have a large impact on the schedulability of the
component

@ A represents the maximum period with no resource
@ Clearly, A should be less that the smaller task deadline in the
component

@ However, A is also related to

(P . Q) sbf{t) A=P-Q a=Q/P
@ A smaller A means more
frequent context switches A
between components, and o t
higher overhead (20 | e | [ em

— P
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Feasibility area

@ Reverse problem: given a component (set of periodic tasks), find
a partition (sbf(t)) such that the component is schedulable

@ Lipari and Bini, 2003 and 2005, solved the problem for fixed
priority (for EDF is very similar)

@ Write Lehoczky’s equations
with «, A unknowns
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Feasibility area

@ Reverse problem: given a component (set of periodic tasks), find
a partition (sbf(t)) such that the component is schedulable

@ Lipari and Bini, 2003 and 2005, solved the problem for fixed
priority (for EDF is very similar)

@ Write Lehoczky’s equations

. Cost functi
with a, A unknowns ost function

@ Find all possible pairs «, A that \
make the component feasible N\ —
@ Select a cost function (e.g. ‘/ -
minimise overhead)
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Feasibility area

@ Reverse problem: given a component (set of periodic tasks), find
a partition (sbf(t)) such that the component is schedulable

@ Lipari and Bini, 2003 and 2005, solved the problem for fixed
priority (for EDF is very similar)

@ Write Lehoczky’s equations

. Cost functi
with a, A unknowns ost function

@ Find all possible pairs «, A that \
make the component feasible N\ —
@ Select a cost function (e.g. ‘/ -
minimise overhead) [P :
| solutiol

@ Find optimal solution

/ a
o L
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Q A 10 minutes introduction to Real-Time scheduling
e Component-based Real-Time Systems

e Time partitioning

9 Analysis

@ Distributed systems

e From theory to practice

@ Conclusions and open problems
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Message passing

@ In the previous model, components may interact through shared

memory
@ However, there may be other important isolation requirements
(memory protection, fault-confinement) that forbid the use of shared
memory in user space
@ Therefore, it is important to also consider message-passing
systems
@ Let’s get back to the definition of component:

Sensor Readi ng {

provi ded:
doubl e read();

required:
pY i mpl ement ati on:
g Thread T1 : periodic (15msec),
i priority = 1;
5 Thread T2 : inplenents read(),
=~ priority = 2;

Schedul er : FixedPriority;
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Component interaction

Sensorl

SensorIntegration

Sensor2

@ Component Sensor | nt egr ati on performs a integrations of the
two stereoscopic images for reconstructing a 3D model

@ Therefore, it uses two instance of component Sensor Readi ngs,
and uses its interface (r ead() ), through a Remote Procedure
Call (RPC)
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(20%, 2) (40%, 1) (40%, 1)

[ e [

1 1
Network

@ We prepare three virtual platforms

@ A virtual platform models a temporal partition on one physical
processor

@ Then, allocate virtual platforms on physical processors
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Analysis

@ Lorente, Lipari and Bini (2006), [LLBO6]
@ Model of the Remote Procedure call

@ We use holistic analysis, therefore, we use the same underlying

model
@ A transaction is a sequence of stages, each stage is part of a task
stages
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@ Lorente, Lipari and Bini (2006), [LLBO6]
@ Model of the Remote Procedure call

@ We use holistic analysis, therefore, we use the same underlying

model
@ A transaction is a sequence of stages, each stage is part of a task
stages

@ Each virtual platform is considered as a separate node in a
distributed system

@ two components allocated on the same physical node will
communicate with very small delay

@ A transaction models the flow of execution through the distributed
system
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@ Holistic Analysis for components

@ Fix platform parameters (aj, A;) for every component
@ Perform holistic analysis (fixed priority)

@ As aresult, obtain the response times of the tasks

o If schedulable, then we can stop

@ otherwise, change («j, Aj), and start over

@ The methodology can be very time-consuming
@ Open Problems:

@ how to derive platform parameters?
@ how to change them so to make the system schedulable?
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Q A 10 minutes introduction to Real-Time scheduling
e Component-based Real-Time Systems
e Time partitioning

9 Analysis
@ Multicore

e From theory to practice

@ Conclusions and open problems
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Multicore platforms

@ Lipari and Bini (2010) [LB10]
@ Each component is scheduled by a Virtual Platform

Application Al

® @
® ®

Application A2

& ®
®

@ Virtual platform is modelled by
a set of virtual processors

{m1,...,"m}

@ Each virtual processor is
statically assigned to a
physical processor

Global Scheduler

Global Scheduler

Virtual Platform  Pl1 Virtual Platform P12

@ More than one virtual

processor may be allocated on
vz cve o the same physical processor
Physical Platform
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Suppose that we need 120% bandwidth for our component
Various possibilities:

Which one is better?
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Suppose that we need 120% bandwidth for our component

Various possibilities:

Which one is better?

From the component point of view, platform A) is better
@ in general it is easier to schedule tasks on such a platform
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Suppose that we need 120% bandwidth for our component

Various possibilities:

Which one is better?

From the component point of view, platform A) is better

@ in general it is easier to schedule tasks on such a platform
From the system point of view, it is difficult to say which platform is
better

@ Which one fits better on an existing physical platform?
@ The goal should be to use the least number of physical processors
@ Platform C) is a better candidate in most cases (smaller pieces)
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We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:
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We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:

If application is
schedulable on C) ...
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We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:

’
|
|
|
|
|
'
|
|

B) O
... then it is schedulable If application is
B |
also on B) and A) schedulable on C) ...
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We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:

’
|
|
|
|
|
'
|
|

B) O
... then it is schedulable If application is
B |
also on B) and A) schedulable on C) ...

2) Platform instantiation and allocation. We want to derive a
run-time allocation algorithm that, starting from C), derives the “best”
platform, and allocates it
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Bounded Delay Multipartition Interface

@ We propose the Bounded Delay Multipartition (BDM) Interface
model

@ A BDM interface is characterised by a Z = (m, A, [f1, . . ., Bm])
@ mis the maximum number of virtual processors
@ A is the worst-case delay (i.e. the longest interval without service)
@ [y is the cumulative service utilisation with k processors
@ We impose 0 < fx — fk—1 < 1, and fx — Bk—1 > Brr1 — fk
@ Which platforms are compliant with this interface model?
@ All platforms whose virtual processors have bandwidth «o; such that:

K
Z o > P
i—0
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Schedulability Analysis

@ We use the work by Bini, Baruah, Bertogna

/\ \ Za, A)o > kCi + W,

i=1,...,nk=1...mj=1

Where W, is the interference of the task
@ Example with three tasks on 2 virtual processors:

Q21 i | C; T Dy W;
T[] L 6 6 0
08 2| 15 27 27 5
31 9 52 52 39
7
06
Possible
0.4| interfaces
——.y
02 Bi=ar B2 ar=pB2—51 ()
) ) 0.7 1.4 0.7 0
0 : 0.8 1.14 0.34 0.46
0 02 04 06 08 1] 0.96 0.96 0 0.96
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Q A 10 minutes introduction to Real-Time scheduling
e Component-based Real-Time Systems
e Time partitioning

9 Analysis

@ Formal methods
e From theory to practice

@ Conclusions and open problems
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Component-based analysis and formal methods

@ Carnevali, Pizzuti, Vicario, Lipari (2010)

@ The idea is to combine component based analysis with

Preemptive Timed Petri Nets (pTPN)

@ The global scheduler is TDM (similar to ARINC 653)
@ The local scheduler can be FP or EDF

@ Threads can be modelled as periodic, sporadic or aperiodic tasks,

and can share local resources through mutex

@ Components are independent
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pTPN model

Model of one component (application)

PTPN task-set submodel

[150,150] [prio=1] - {cpu} [prio=1] - {cpu) [prio=1] - {cpu}
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Execution time:

|| Model H# Classes RAM Time H
model of Ay 32084 ~ 300 MB ~ 20 sec
model of A, 183981 ~ 300 MB ~ 83 sec
model of Az 26147 ~ 300 MB ~ 15 sec

|| flat model H > 10° |> 4 GB (out of memory)‘> 13 min“

@ The total running time is orders of magnitude less for the
component-based model than for the flat model

@ The state space is manageable, therefore it is possible to easily
analyse large systems (more than 10 tasks)
@ Work in progress:

@ Extend to more general global schedulers
o Extend to interacting components
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e From theory to practice
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CBD in industry

@ Industry is (mildly) pushing for a component-based technology for
real-time embedded systems
@ Cost increases more than linearly with complexity
@ Need to contain the development cost without compromising safety
@ Need to integrate components from different providers in the same
ECU
@ Need to re-use existing components
@ Need to reduce testing effort and improve its quality and
effectiveness
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Avionics

@ ARINC 653 is a specification for space and time partitioning in

avionic software

@ The global scheduler is a simple TDM

4 Flight

: Control (FC)
1 User Application
| Mode
| Level A

ARINC 653 POSIX VxWorks Ada/Java
Partition 0S Partition 0S Partition 0S Partition 0S

Radar Graphics Display
Application Generator Application
Application

Level B Level C Level D

Thread
Scheduling
Only

PR (NS CEOT XML Configuration Data ]

Architecture Support Board Support
Keme' Package (ASP) Package (BSP)

Hardware
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CBD in automotive

@ AUTOSAR defines space and memory isolation among
components/applications

Interfaces
Components and interfaces view (simplified)

r————— Application Actuator Sensor Application
AUTOSAR Software Software Software AUTOSAR Software
Softwire C Component
| Software
Standard
Software
S Standardized AUTOSAR AUTOSAR
Interface Interface Interface Interface
Iinterfaces: Iitaridce g :
: ECU
& vFB & RTE Services Communication Abstraction
relevant
& rTE = Interface Interface Interface
relevant & i i f : Complex
= Bsw System |3 Device
relevant 8 Standardized Devere
Possible interfaces Interface
inside a Microcontroller
(which are Abstraction
ECU-Hardware
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Operating Systems

@ Many EU projects on this topic:

@ FIRST: integrations of different schedulers through hierarchies
(Shark, MARTE OS)

@ FRESCOR: An API for contract-based scheduling (MARTE OS,
Linux, RTLinux)

@ ACTORS: Resource reservations and control, also on multicore
(Linux)

@ IRMOS: Virtualisation for supporting Service Oriented real-time and
multimedia systems (Linux)

@ SSSA work in Linux:
@ SCHED_DEADLINE patch: provides EDF+CBS in Linux, will be
extended to hierarchical systems
@ IRMOS scheduler: provides soft real-time EDF+CBS with group
scheduling (via Cgroups)
@ Other commercial kernels provide means to implement Resource
Reservations and group scheduling, but no direct API for
component based-RT.
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Virtual Machines

@ Virtualisation can be
considered as a way of
providing temporal
partitions

@ Many VM Hypervisors
provide global schedulers
that partition the time line
(e.g. Xen)

@ Experiments with KVM in
the IRMOS project

G. Lipari (SSSA and LSV@ENS)

Management
Operating

Hardware
Virtualized
Virtual Machine

o

Guest Operating
System

Paravirtualized
Virtual Machine

Guest Operating
System

Paravirtualized
Virtual Machine

@

Guest Operating

s

Management
AP

Virtual Hardware AP|

Hypervisor

(

Host Hardware, CPU, Memory,
Network, Disk

Component-based

MeFoSyLoMa 62/70



Design methodologies

@ Existing approaches for embedded RT systems

@ HRT-Hood UMLED
@ UML-RT (from OMG profile for SPT) MARTE
@ UML-MARTE (OMG profile for embedded

systems)

@ UML Marte enable schedulability analysis, but . . .

@ does not address the “component” issues very well
schedulability analysis is only done at the integration phase
no hierarchy of schedulers
heavily dependent on underlying scheduling mechanisms

e & ¢
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@ Conclusions and open problems
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Open problems

@ Component-based design and analysis of Real-Time Systems
already has more than ten years of research behind

@ Increasingly complex models, from the Liu&Layland model to
multicore systems, and interacting components

@ However, it has not yet been widely adopted in the industrial
practice

@ Exception: avionics
@ What is still missing?
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Open problems

@ Component-based design and analysis of Real-Time Systems
already has more than ten years of research behind

@ Increasingly complex models, from the Liu&Layland model to
multicore systems, and interacting components

@ However, it has not yet been widely adopted in the industrial
practice
@ Exception: avionics
@ What is still missing?
@ Run-Time Support

@ A proper API to support components, time partitions and local
schedulers

@ Analysis

@ Component interaction using message passing
@ Formal methods to deal with components

@ Scheduling
@ Scheduling on multicores and distributed systems
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Thank you

THANK YOU! ?

 aprgar ReTiS Lab
Scuola Superiore Sant'/Anna
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