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Real-Time Systems

Most real-time systems are concurrent
need to handle many events with different temporal characteristics

Periodic events
In control systems, periodic sampling, computation of the control
algorithm, actuation
Different events may have different periods

Aperiodic events
May be triggered by the external environment
Examples: a sensor triggers an interrupt, a packet arrives from the
network

Different events are handled by different tasks that run
concurrently

Constraints: each task instance must complete before a certain
instant (deadline)

Scheduling problem: how to interleave tasks executions so that
each task instance meets its deadline

G. Lipari (SSSA and LSV@ENS) Component-based MeFoSyLoMa 4 / 70



Task model

A task can be:

periodic: has a regular structure, consisting of an infinite cycle, in
which it executes a computation and then suspends itself waiting
for the next periodic activation. An example of pthread library code
for a periodic task is the following:

void * PeriodicTask(void *arg)
{

<initialization>;
<start periodic timer, period = T>;
while (cond) {

<read sensors>;
<update outputs>;
<update state variables>;
<wait next activation>;

}
}
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Periodic tasks

A periodic task τi = (Ci,Di, Ti) is a infinite sequence of jobs
Ji,k = {ai,k, ci,k, di,k}, where:

ai,0 = 0

ai,k = ai,k−1 + Ti ∀k > 0

di,k = ai,k + Di ∀k ≥ 0

Ci = max
k

{ci,k}

Ti is the task’s period;

Di is the task’s relative deadline;

Ci is the task’s worst-case execution time (WCET);

Ri is the worst-case response time

for the task to be schedulable, it must be Ri ≤ Di.
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Example of schedule

Fixed priority: the active task with the highest priority is executed
on the processor.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
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Difference with Classical Scheduling problems

In classical scheduling problems (i.e. Job-shop)
Tasks are one-shot (not periodic)
No timing constraints
Goal is to minimise completion time (the make-span problem), or
some cost function.
Resources can be complex (different machines, precedence
constraints, etc.)
The general form is often only solvable by Mixed-Integer Linear
Programming.

In real-time scheduling
Tasks are periodic or sporadic
emphasis on time constraints
resources are simple (single processors, uniform multiprocessors)
many problems can be solved in polynomial time
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Scheduling, schedulability, feasibility

Scheduling algorithm
An on-line or off-line algorithm A that, given a task set T decides
which tasks are executed at each instant on each processor (the
schedule σ(A, T , t))
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Scheduling algorithm
An on-line or off-line algorithm A that, given a task set T decides
which tasks are executed at each instant on each processor (the
schedule σ(A, T , t))

Schedulable task set
A task set T is schedulable by algorithm A iff all jobs complete
before their deadlines in the schedule σ(A, T , t)

Schedulability test
Given a scheduling algorithm A, and a set of tasks T , decide if A
will produce a feasible schedule (i.e. a schedule in which all jobs)

Feasibility problem
Given a set of tasks T , decide if it exists a scheduling algorithm A
that produces a feasible schedule on T .

G. Lipari (SSSA and LSV@ENS) Component-based MeFoSyLoMa 9 / 70



Schedulability test

One key objective of real-time analysis is to be able to know in
advance if the task set is schedulable by a certain scheduling
algorithm
Generate and check the schedule (hint: it is a periodic function)

Pro: in this case, feasibility can be reduced to a classical MILP
problem
Cons: NP-Hard
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Schedulability test

One key objective of real-time analysis is to be able to know in
advance if the task set is schedulable by a certain scheduling
algorithm
Generate and check the schedule (hint: it is a periodic function)

Pro: in this case, feasibility can be reduced to a classical MILP
problem
Cons: NP-Hard

Worst-case approach: try to identify worst-case scenario
Pro: feasibility in polynomial (or pseudo-polynomial) complexity
Cons: not quite easy to identify the worst-case
Cons: often, only sufficient conditions
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Schedulability tests

Theorem (Liu and Layland, 1973)
Consider n periodic (or sporadic) tasks with relative deadline equal to
periods, whose priorities are assigned in Rate Monotonic order. Then,

U =
n

∑

i=1

Ci

Ti
≤ Ulub = n(21/n − 1)

Ulub is a decreasing function of n;
For large n: Ulub → 0.69

n Ulub n Ulub

2 0.828 7 0.728
3 0.779 8 0.724
4 0.756 9 0.720
5 0.743 10 0.717
6 0.734 11 . . .
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Dynamic priority scheduling

The most important dynamic priority algorithm is Earliest Deadline
First (EDF)

The priority of a job (instance) is inversely proportional to its
absolute deadline;

Example with U = 23
24

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
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Schedulability tests

Theorem (Optimality, Dertouzos ’73)
If a set of jobs J is schedulable by an algorithm A, then it is
schedulable by EDF.

Theorem (Liu & Layland ’71)
Given a task set of periodic or sporadic tasks, with relative deadlines
equal to periods, the task set is schedulable by EDF if and only if

U =
N
∑

i=1

Ci

Ti
≤ 1
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A key problem

Scheduling experts start from a task model where the
computation times of the tasks are given
However, estimating WCET can be extremely difficult

Compute all possible paths in the code (not so difficult)
Under all possible values of input vectors (much more difficult), and
state variables (very difficult!)
For each path, take the assembly code and compute number of
cycles

Last step requires a precise model of the hardware platform
A model of the hardware instruction pipeline
A model of the cache memory
a model of other unpredictabilities (like out-of-order execution)

If it is not done right, large overestimation of WCET, or (even
worse!) underestimation

G. Lipari (SSSA and LSV@ENS) Component-based MeFoSyLoMa 14 / 70



Domino effect

In case of overhead (U > 1), in EDF we have the domino effect: it
means that all tasks miss their deadlines.

An example of domino effect is the following;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4
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Domino effect: considerations

FP is more predictable: only lower priority tasks miss their
deadlines! In the previous example, if we use FP:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

However, it may happen that some task never executes in case of
high overload

EDF is more fair (all tasks are treated in the same way).
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Current research trends

Many different task models have been proposed
With precedence constraints, varying computation time,
probabilistic, shared resources, soft real-time, etc.

After many years, single processor problem is (almost) a closed
area of investigation

Multi-processor scheduling: one or two orders of magnitude more
difficult problem, still open

Distributed system: general problem still very difficult, but lot of
research has been done

In this talk:

Component-based analysis of Real-Time Systems
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Modern Real-Time Systems

Modern real-time applications can be very complex

Automotive software (high-end
car model)

Millions of lines of (low level)
code
up to 80 distributed nodes
up to 5 different networks

At the same time they are
safety critical

A single bug may
compromise human life

Problems:

How to analyse, certify and validate the code?

How to manage complexity?
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Off-line and on-line

Off-line:
Write code,
estimate WCET,
perform analysis

On-line:
Execute task on the OS (by the scheduler)

If some WCET is underestimated, anything can happen
The more complex is the system, the more difficult is to keep
analysis and execution in sync

Design
model

Implementation
Code

Task Model
(timing)

Scheduling
Analysis

Schedule
Properties

OS +
Scheduler

OS +
Scheduler

G. Lipari (SSSA and LSV@ENS) Component-based MeFoSyLoMa 20 / 70



Component-based design

Design the overall
architecture

as a set of smaller
interacting components

Component design and
implementation

in modern applications,
some component is
implemented by third
parties
some component could be
reused from previous
projects

When components are
completed, do integration and
analysis
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Advantages

Simplify the design of complex distributed systems

system as hierarchy of components

Independent design and implementation of sub-systems

separation between interface and implementation

Re-use of existing and well-tested components

to reduce development cost

Dynamic and on-line (re-)configuration

substitute or upgrade a component, possibly on-line
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Component-based analysis

A component-based methodology should include a
component-based analysis
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Component-based analysis

A component-based methodology should include a
component-based analysis
Analysis is first done at each component level

This is the “local” analysis
The result is a (functional and non-functional) characterisation of
the properties of the component
For example: resource requirements of the component over time

Then, at the global level
Component are integrated in the final system
Each component is represents by its interface, including functional
and non-functional properties (e.g., resource requirements)
Therefore, in global analysis we can ignore the internal details of all
components

Pro: simplification

Cons: we lose optimality, we may waste resources
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Run-time support

Analysis is necessary, but not sufficient to implement a
component-based system
We also need Run-Time Support

The concept of component should be supported by at the Operating
Systems (or at the Middle-ware) level
Component must be “isolated” from each other to avoid cross-talk
effects not caught at analysis time

OS should enforce isolation
Memory isolation (to avoid memory corruption by a bugged
component)
Temporal isolation (to avoid that a component uses more resources
than expected)
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Traditional approach to scheduling fails

Summary of objectives

Objective 1: independent component analysis

Objective 2: system analysis using (light) abstractions

Now we see why it is impossible to achieve these objectives with a
single flat scheduler

(hint: complexity is high)
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Example

Designer can assign local priorities (no global knowledge)

At integration phase need to assign priorities relative to each other

Example: two components, two tasks each

p1 > p2 and p3 > p4
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Example

Designer can assign local priorities (no global knowledge)

At integration phase need to assign priorities relative to each other

Example: two components, two tasks each

p1 > p2 and p3 > p4

Possible priority ordering:
1 p1 > p2 > p3 > p4
2 p1 > p3 > p2 > p4
3 p1 > p3 > p4 > p2
4 p3 > p4 > p1 > p2
5 p3 > p1 > p4 > p2
6 p3 > p1 > p2 > p4
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Temporal isolation

Higher priority does not always mean higher importance
Priority is a scheduling artifact
For example, it could be used to maximise the probability of being
schedulable

Without “temporal isolation”,
A task that executes more than expected may cause a deadline
miss to lower priority tasks (that may belong to other components)

In a flat system, everything interacts with everything else
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Two-levels of scheduling

Summary of objectives
Objective 1: independent component analysis
Objective 2: system analysis using (light) abstractions

Our solution: two levels of scheduling
A global scheduler selects the components to execute, regardless
of their internal structure
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Two-levels of scheduling

Summary of objectives
Objective 1: independent component analysis
Objective 2: system analysis using (light) abstractions

Our solution: two levels of scheduling
A global scheduler selects the components to execute, regardless
of their internal structure
When a component is selected by the global scheduler, a local
scheduler decides which of the tasks is executing
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Global and local scheduler

The global scheduler partitions the resource and allocates it to the
components

the local scheduler assign the resource to the component threads

0 2 4 6 8 10 12 14 16 18 20 22 24 26

A(2,4)

B(3,6)

τ
A
1 (2, 8)

τ
A
2 (2, 12)

τ
B
1 (2, 9)

τ
B
2 (3, 16)
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Chronology of papers

Problem: given a component (set of periodic threads and a local
scheduler) on a time partition, how to test its schedulability?

Deng and Liu, (1997) [DL97]
The BSS algorithm, by Lipari, Buttazzo, Baruah, Carpenter
(1998–2000) [LB00, LCB00, LBA98]
Time partitions, Feng and Mok, (2001 – 2002) [MF01, FM02]
Temporal interfaces, Shin and Lee, (2003) [SL03]

Inverse problem: find a partition that makes the component
schedulable

Lipari and Bini (2003, 2005), [LB03, LB05]
Almeida and Pedreiras (2004) [AP04]
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Supply-bound function

The supply bound function (sbf(t))

it is the minimum amount of resource that the global scheduler
provides to one component in an interval of length t

It depends on how the resource is partitioned by the global
scheduler

∆ is the
maximum delay
(interval with no
resource)

α is the
provided
bandwidth
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Static and dynamic partitions

Static partitions:

The global scheduler uses TDM

Advantages: reduces delay, improves determinism

Disadvantages: rigid and unflexible

Dynamic Partitions:

The global scheduler uses a Resource Reservation Algorithm
(e.g. CBS, or similar)

Advantages: can reclaim unused bandwidth, can adapt
dynamically, useful for open systems

Disadvantages: may have a larger delay
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Dynamic partitions

The sbf(t) for CBS is as follows:
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Schedulability conditions

After characterising the sbf(t), it is possible to test schedulability
using the following properties
Fixed Priority Local scheduler:

Lehoczky test: for every task, it must exist a point t where the
required computation time does not exceed t:

∃t ∈ Pi

i
∑

j=1

⌈

t
Ti

⌉

Ci ≤ t
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required computation time does not exceed t:

∃t ∈ Pi

i
∑

j=1

⌈

t
Ti

⌉

Ci ≤ t

Lehoczky test for partitions: for every task, it must exist a point t
where the required computation time does not exceed sbf(t)

∃t ∈ Pi

i
∑

j=1

⌈

t
Ti

⌉

Ci ≤ sbf(t)
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Schedulability conditions

Earliest Deadline First Local scheduler:
Demand Bound Function test: For any interval of length t the
demand bound function does not exceed t:

∀t ≤ dline(T )

i
∑

j=1

(⌊

t − Di

Ti

⌋

+ 1

)

Ci ≤ t
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Demand Bound Function test: For any interval of length t the
demand bound function does not exceed t:

∀t ≤ dline(T )

i
∑

j=1

(⌊

t − Di

Ti

⌋

+ 1

)

Ci ≤ t

DBF test partitions: For interval of length t the demand bound
function does not exceed sbf(t):

∀t ≤ dline(T )

i
∑

j=1

(⌊

t − Di

Ti

⌋

+ 1

)

Ci ≤ sbf(t)
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Time granularity

Parameter ∆ can have a large impact on the schedulability of the
component

∆ represents the maximum period with no resource
Clearly, ∆ should be less that the smaller task deadline in the
component
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Time granularity

Parameter ∆ can have a large impact on the schedulability of the
component

∆ represents the maximum period with no resource
Clearly, ∆ should be less that the smaller task deadline in the
component

However, ∆ is also related to
(P − Q)

A smaller ∆ means more
frequent context switches
between components, and
higher overhead
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Feasibility area

Reverse problem: given a component (set of periodic tasks), find
a partition (sbf(t)) such that the component is schedulable

Lipari and Bini, 2003 and 2005, solved the problem for fixed
priority (for EDF is very similar)

Write Lehoczky’s equations
with α,∆ unknowns
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Feasibility area

Reverse problem: given a component (set of periodic tasks), find
a partition (sbf(t)) such that the component is schedulable

Lipari and Bini, 2003 and 2005, solved the problem for fixed
priority (for EDF is very similar)

Write Lehoczky’s equations
with α,∆ unknowns

Find all possible pairs α,∆ that
make the component feasible

Select a cost function (e.g.
minimise overhead)

Find optimal solution
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Message passing

In the previous model, components may interact through shared
memory

However, there may be other important isolation requirements
(memory protection, fault-confinement) that forbid the use of shared
memory in user space
Therefore, it is important to also consider message-passing
systems

Let’s get back to the definition of component:

SensorReading {
provided:

double read();
required:
implementation:

Thread T1 : periodic (15msec),
priority = 1;

Thread T2 : implements read(),
priority = 2;

Scheduler : FixedPriority;
}
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Component interaction

Component SensorIntegration performs a integrations of the
two stereoscopic images for reconstructing a 3D model

Therefore, it uses two instance of component SensorReadings,
and uses its interface (read()), through a Remote Procedure
Call (RPC)
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Mapping

We prepare three virtual platforms
A virtual platform models a temporal partition on one physical
processor

Then, allocate virtual platforms on physical processors
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Analysis

Lorente, Lipari and Bini (2006), [LLB06]
Model of the Remote Procedure call

We use holistic analysis, therefore, we use the same underlying
model
A transaction is a sequence of stages, each stage is part of a task
stages
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Analysis

Lorente, Lipari and Bini (2006), [LLB06]
Model of the Remote Procedure call

We use holistic analysis, therefore, we use the same underlying
model
A transaction is a sequence of stages, each stage is part of a task
stages

Each virtual platform is considered as a separate node in a
distributed system

two components allocated on the same physical node will
communicate with very small delay
A transaction models the flow of execution through the distributed
system
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Analysis

Holistic Analysis for components
Fix platform parameters (αi,∆i) for every component
Perform holistic analysis (fixed priority)
As a result, obtain the response times of the tasks
If schedulable, then we can stop
otherwise, change (αi,∆i), and start over

The methodology can be very time-consuming
Open Problems:

how to derive platform parameters?
how to change them so to make the system schedulable?
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Multicore platforms

Lipari and Bini (2010) [LB10]

Each component is scheduled by a Virtual Platform

SchedulerGlobal

t1

t3

t2

t4

Application A1

SchedulerGlobal

t2

t3

t1

Application A2

CPU 1 CPU 2 CPU 3 CPU 4

p1 p2 p3 p1 p2

Virtual Platform PI1 Virtual Platform PI2

Physical Platform

Virtual platform is modelled by
a set of virtual processors
{π1, . . . , πm}

Each virtual processor is
statically assigned to a
physical processor

More than one virtual
processor may be allocated on
the same physical processor
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Basic idea

Suppose that we need 120% bandwidth for our component

Various possibilities:

Which one is better?
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Basic idea

Suppose that we need 120% bandwidth for our component

Various possibilities:

Which one is better?

From the component point of view, platform A) is better

in general it is easier to schedule tasks on such a platform

From the system point of view, it is difficult to say which platform is
better

Which one fits better on an existing physical platform?
The goal should be to use the least number of physical processors
Platform C) is a better candidate in most cases (smaller pieces)
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Basic idea

We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:
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Basic idea

We want to take advantage of this trade-off to add flexibility

1) Component schedulability. We want to propose an interface, and
the corresponding schedulability test, such that:

2) Platform instantiation and allocation. We want to derive a
run-time allocation algorithm that, starting from C), derives the “best”
platform, and allocates it
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Bounded Delay Multipartition Interface

We propose the Bounded Delay Multipartition (BDM) Interface
model

A BDM interface is characterised by a I = (m,∆, [β1, . . . , βm])
m is the maximum number of virtual processors
∆ is the worst-case delay (i.e. the longest interval without service)
βk is the cumulative service utilisation with k processors
We impose 0 ≤ βk − βk−1 ≤ 1, and βk − βk−1 ≥ βk+1 − βk

Which platforms are compliant with this interface model?
All platforms whose virtual processors have bandwidth αi such that:

k
∑

i=0

αi ≥ βk
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Schedulability Analysis

We use the work by Bini, Baruah, Bertogna

∧

i=1,...,n

∨

k=1...,m

k
∑

j=1

αj(Di −∆)0 ≥ kCi + Wi

Where Wi is the interference of the task
Example with three tasks on 2 virtual processors:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

interfaces
Possible

α1

α2
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Component-based analysis and formal methods

Carnevali, Pizzuti, Vicario, Lipari (2010)
The idea is to combine component based analysis with
Preemptive Timed Petri Nets (pTPN)

The global scheduler is TDM (similar to ARINC 653)
The local scheduler can be FP or EDF
Threads can be modelled as periodic, sporadic or aperiodic tasks,
and can share local resources through mutex
Components are independent
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pTPN model

Model of one component (application)

Model of the scheduler
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Results

Execution time:

The total running time is orders of magnitude less for the
component-based model than for the flat model

The state space is manageable, therefore it is possible to easily
analyse large systems (more than 10 tasks)
Work in progress:

Extend to more general global schedulers
Extend to interacting components
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CBD in industry

Industry is (mildly) pushing for a component-based technology for
real-time embedded systems
Cost increases more than linearly with complexity

Need to contain the development cost without compromising safety
Need to integrate components from different providers in the same
ECU
Need to re-use existing components
Need to reduce testing effort and improve its quality and
effectiveness
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Avionics

ARINC 653 is a specification for space and time partitioning in
avionic software
The global scheduler is a simple TDM
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CBD in automotive

AUTOSAR defines space and memory isolation among
components/applications
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Operating Systems

Many EU projects on this topic:
FIRST: integrations of different schedulers through hierarchies
(Shark, MARTE OS)
FRESCOR: An API for contract-based scheduling (MARTE OS,
Linux, RTLinux)
ACTORS: Resource reservations and control, also on multicore
(Linux)
IRMOS: Virtualisation for supporting Service Oriented real-time and
multimedia systems (Linux)

SSSA work in Linux:
SCHED_DEADLINE patch: provides EDF+CBS in Linux, will be
extended to hierarchical systems
IRMOS scheduler: provides soft real-time EDF+CBS with group
scheduling (via Cgroups)

Other commercial kernels provide means to implement Resource
Reservations and group scheduling, but no direct API for
component based-RT.
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Virtual Machines

Virtualisation can be
considered as a way of
providing temporal
partitions

Many VM Hypervisors
provide global schedulers
that partition the time line
(e.g. Xen)

Experiments with KVM in
the IRMOS project
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Design methodologies

Existing approaches for embedded RT systems
HRT-Hood
UML-RT (from OMG profile for SPT)
UML-MARTE (OMG profile for embedded
systems)

UML Marte enable schedulability analysis, but . . .
does not address the “component” issues very well
schedulability analysis is only done at the integration phase
no hierarchy of schedulers
heavily dependent on underlying scheduling mechanisms
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Open problems

Component-based design and analysis of Real-Time Systems
already has more than ten years of research behind

Increasingly complex models, from the Liu&Layland model to
multicore systems, and interacting components

However, it has not yet been widely adopted in the industrial
practice

Exception: avionics

What is still missing?
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Component-based design and analysis of Real-Time Systems
already has more than ten years of research behind

Increasingly complex models, from the Liu&Layland model to
multicore systems, and interacting components

However, it has not yet been widely adopted in the industrial
practice

Exception: avionics

What is still missing?
Run-Time Support

A proper API to support components, time partitions and local
schedulers

Analysis
Component interaction using message passing
Formal methods to deal with components

Scheduling
Scheduling on multicores and distributed systems
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Thank you

Scuola Superiore Sant’Anna

THANK YOU!
ReTiS Lab
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