MeFoSyLoMa 11/7/2014

Weak Fairness is So Revealing !

Stefan Haar

INRIA and LSV, CNRS and ENS Cachan

with S. Balaguer, Th. Chatain, V. Germanos, C. Kern, V. Khomenko, C. Rodriguez, S. Schwoon ...

July 11, 2014

What Occurrence Nets Reveal

2 Reveal Your Faults: Weak Diagnosis

3 WF Diagnosability

Weak Fairness is So Revealing !

What Occurrence Nets Reveal

2 Reveal Your Faults: Weak Diagnosis

3 WF Diagnosability

Some actions reveal one another

z prevents y_1 ... and therefore makes x inevitable:

z reveals $x : z \triangleright x$

Petri net:

Petri net:

Petri net:

Petri net:

Petri net:

- *Process:* representation of a non-sequential run as a partial order.
- *Branching process:* representation of several runs.

Unfolding: maximal branching process.

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality
$$\leq$$

 $e \leq f \quad \stackrel{def}{\Leftrightarrow} \quad e \; F^* \; f \; (directed path from \; e \; to \; f)$

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality	\leq	
$e \leq f$	$\stackrel{def}{\Leftrightarrow}$	$e \ F^* \ f$ (directed path from e to f)
Conflict 7	#	
$e \ \#_d \ g \ q \ f \ \# \ h \ q \ q$	$\stackrel{def}{\Leftrightarrow}$	$e \neq g \land {}^{\bullet}e \cap {}^{\bullet}g \neq \emptyset$ $\exists e \leq f, g \leq h : e \ \#_d \ g$

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality
$$\leq$$

 $e \leq f \stackrel{def}{\Leftrightarrow} e F^* f$ (directed path from e to f)

$$e \#_{d} g \stackrel{\text{def}}{\Leftrightarrow} e \neq g \wedge {}^{\bullet}e \cap {}^{\bullet}g \neq \emptyset$$
$$f \# h \stackrel{\text{def}}{\Leftrightarrow} \exists e \leq f, g \leq h : e \#_{d} g$$

Concurrency co

$$\begin{array}{ccc} f \hspace{0.1cm} \textit{co} \hspace{0.1cm} i \hspace{0.1cm} \stackrel{\text{\tiny def}}{\Leftrightarrow} \hspace{0.1cm} \neg(i \hspace{0.1cm} \# \hspace{0.1cm} f) \land \neg(i \leq f) \land \neg(f \leq i) \end{array}$$

Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B, E, F) where B and E are the sets of *conditions* and *events*, and which satisfies:

- no self-conflict,
- 2 acyclicity
- finite causal pasts: $\forall e \in E$, $\lceil e \rceil \stackrel{def}{=} \{e': e' \le e\}$ is finite.
- no backward branching for conditions,
- $\bot \in E$ is the only \leq -minimal node (event \bot creates the initial conditions).

Weak Fairness in PNs

Spoilers

Let $t \in T$. The set of t's *spoilers* is $spoil(t) \stackrel{\text{def}}{=} \{t' \in T \mid {}^{\bullet}t' \cap {}^{\bullet}t \neq \emptyset\}.$

Note : $t \in spoil(t)$!

Weak Fairness (Vogler 1995)

Infinite run $\sigma = t_1 t_2 \ldots \in T^{\infty}$ of N, with marking sequence $m_1 m_2 \ldots$, is weakly fair for $t \in T$ if and only if for all $i \in \mathbb{N}$,

$$m_i \xrightarrow{t} \Rightarrow \exists j > i : t_j \in spoil(t).$$

 σ is weakly fair iff it is w.f. for all $t \in T$.

Theorem

 σ is weakly fair iff it is the interleaving of some maximal run ω of N.

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Structural relations vs logical relations

• The structural relations imply *logical dependencies* between event occurrences:

•
$$a \le b \Rightarrow (\forall \omega \in \Omega, b \in \omega \Rightarrow a \in \omega),$$

•
$$a \ \# b \Leftrightarrow \forall \omega \in \Omega, \{a, b\} \not\subseteq \omega,$$

• Some logical dependencies ("if a then b") implied by weak fairness cannot be expressed by the structural relations.

Structural relations vs logical relations

• The structural relations imply *logical dependencies* between event occurrences:

•
$$a \le b \Rightarrow (\forall \omega \in \Omega, b \in \omega \Rightarrow a \in \omega),$$

- $a \ \# b \Leftrightarrow \forall \omega \in \Omega, \{a, b\} \not\subseteq \omega$,
- Some logical dependencies ("if *a* then *b*") implied by weak fairness cannot be expressed by the structural relations.

Here

- Formalization of logical dependencies in a *relational framework* with *reveals* relations ▷ and →
- Reduction of Occurrence nets by contracting facets
- Concurrency vs Independence : tight nets
- Connection with diagnosis under partial observation

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run ω ,

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run ω ,

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $\begin{array}{l} d \triangleright a, \\ h \triangleright \bot, \end{array}$

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run ω_{r}

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

$a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run $\omega,$

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run ω , $a \in \omega \implies b \notin \omega$

 $\Rightarrow c \in \omega$ (weak fairness)

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Lemma

Lemma: Characterization of Ω by # A set of events ω is a maximal run iff

 $\forall a \in E, a \notin \omega \Leftrightarrow \#[a] \cap \omega \neq \emptyset$

where $\#[e] \stackrel{\text{\tiny def}}{=} \{f \in E \mid f \# e\}.$

Characterization of \triangleright by

 $\forall e, f \in E, e \triangleright f \Leftrightarrow \#[f] \subseteq \#[e]$ i.e. any event that could prevent the occurrence of f is prevented by the occurrence of e.

Reveals Relation

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Properties

- ▷ is reflexive and transitive, but it is not antisymmetric in general.
- The conflict relation (#) is inherited under \triangleright^{-1} : $g \triangleright a \land a \# b \Rightarrow g \# b$.

Computing ▷: Finding witnesses [HKS 2011]

Definition

Let U_M be the first complete finite prefix of (N, M), and K_M the height of U_M ; then set

 $K := \max_{M \in \mathcal{R}(M_0)} K_M.$

Theorem [HKS 2011]

For any two events x, y such that $\neg(x \triangleright y)$, there exists an event z such that

$$z \# y$$

- $\neg(z \# x)$
- $\mathbf{h}(z) \leq K + \max(\mathbf{h}(x), \mathbf{h}(y))$

Facets Abstraction [H2010, BCH2011]

Definition (Facets)

A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.

Facets Abstraction [H2010, BCH2011]

Definition (Facets)

A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.

Definition (Reduced ON)

A reduced ON is an ON (B, Ψ, F) such that $\forall \psi_1, \psi_2 \in \Psi$, $\psi_1 \sim \psi_2 \Leftrightarrow \psi_1 = \psi_2$.

facets can be contracted into events

Binary Relations on Ψ and Reduced Nets [H2010,BCH2011]

The causality (\leq), conflict (#), concurrency (*co*) and reveals (\triangleright) relations naturally extend to Ψ .

Lemma

Lemma $1 \triangleright$ is a partial order on Ψ (\triangleright is antisymmetric by definition of a reduced ON).

$(\Psi, \triangleright^{-1}, \#)$ is an event structure

- \triangleright^{-1} is a partial order, \checkmark
- The set $\{\psi' \mid \psi \triangleright \psi'\}$ is not always finite, \checkmark
- # is inherited under \triangleright^{-1} .

Infinite Revealed Set [BCH2011]

For a facet $\psi,$ the set $\{\psi'\mid\psi \triangleright\psi'\}$ may not be finite.

 $\psi_3 \triangleright \psi_{1,i}, \, \forall i \in \mathbb{N}^*$

Binary Relations on Ψ [BCH2011]

The causality (\leq), conflict (#), concurrency (*co*) and reveals (\triangleright) relations naturally extend to Ψ .

Lemma

Lemma 1 \triangleright is a partial order on Ψ (\triangleright is antisymmetric by definition of a reduced ON).

Lemma

Lemma 2 For any finite reduced ON (B, Ψ, F) , $(\Psi, \triangleright^{-1}, \#)$ is a prime event structure since:

- \triangleright^{-1} is a partial order,
- $\forall \psi \in \Psi$, the set $\{\psi' \mid \psi \triangleright \psi'\}$ is finite,
- # is inherited under \triangleright^{-1} .

Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# \ b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does *a co b* mean *a* and *b* are logically independent ?

No, they can be related by \triangleright .

 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does a co b mean a and b are logically independent ?
 No, they can be related by ▷.

 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Independency relation *ind*

$$\begin{array}{ll} \forall a,b \in \Psi, \ a \ ind \ b \\ \Leftrightarrow \end{array} \begin{array}{l} \neg(a \ \# \ b) \land \neg(b \triangleright a) \land \neg(a \triangleright b) \\ \Leftrightarrow & a \ co \ b \land \neg(b \triangleright a) \land \neg(a \triangleright b) \end{array} \end{array}$$

• #, \triangleright and *ind* are also mutually exclusive.

Reveal Your Faults: Weak Diagnosis

Minimal ▷ and # [BCH2011]

Immediate conflict relation $\#_i$

$$\begin{array}{c} a \ \#_i \ b \ \stackrel{\text{\tiny def}}{\Leftrightarrow} \ a \ \# \ b \land \nexists \ c : \\ (c \neq a \land a \triangleright c \land c \ \# \ b) \lor \\ (c \neq b \land b \triangleright c \land c \ \# \ a) \end{array}$$

Immediate reveals relation \triangleright_i

Transitive reduction of \triangleright : let $a \triangleright_i b \stackrel{\scriptscriptstyle def}{\Leftrightarrow}$ iff

- $a \triangleright b$ and $a \neq b$
- for all $c: a \triangleright c \triangleright b \Rightarrow c \in \{a, b\}$

$$\Omega = \left\{ \{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \\ \{\psi_{\perp}, a', b\}, \{\psi_{\perp}, a', b'\} \right\}$$

 $\neg(c \ \#_i \ a') \text{ since } c \triangleright a \text{ and } a \ \# \ a' \\ \neg(c \triangleright_i \ \psi_{\perp}) \text{ since } c \triangleright a \text{ and } a \triangleright \psi_{\perp}$

Remarks

- $\triangleright = \triangleright_i^*$,
- $# = (\triangleright_i^{-1})^* \circ #_i \circ \triangleright_i^* (\triangleright-inheritance of #),$
- Therefore \triangleright_i and $\#_i$ define Ω (characterization of Ω by #).

"Tightening" a Reduced ON [BCH2011]

Tight net

A tight net is a reduced ON (B, Ψ, F) such that $\forall a, b \in \Psi$, $a \triangleright b \Leftrightarrow b \leq a$.

Violations of tightness

 $a,b\in \Psi$ such that

- \bullet a co b
- $a \triangleright b$

Net Surgery

Add a condition from b to a for all a,b such that

- \bullet a co b
- $a \triangleright_i b$

Another Example for Tightening [BCH2011]

$$\Omega = \left\{ \{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \{\psi_{\perp}, a', b\} \right\}$$

Another Example for Tightening [BCH2011]

$$\Omega = \left\{ \{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \{\psi_{\perp}, a', b\} \right\}$$

Definition (Tight net)

A tight net is a reduced ON (B, Ψ, F) such that $\forall a, b \in \Psi$, $a \triangleright b \Leftrightarrow b \leq a$.

What Occurrence Nets Reveal

Reveal Your Faults: Weak Diagnosis

WF Diagnosability

Conclusion

Weak Fairness is So Revealing !

What Occurrence Nets Reveal

2 Reveal Your Faults: Weak Diagnosis

3 WF Diagnosability

Reveal Your Faults: Partial observation and Diagnosis

Assumptions

- Possible behaviours well-known
- Current execution only partially visible

Goal:

 Determine, from partial observations, whether some invisible event (fault) has occurred.

Sequential Semantics Misses a Point

Suppose that

- $T_O = \{b, y\}$
- $\bullet \ \Phi = \{v\}$

v will be correctly diagnosed if y occurs. What if not ? If

 $bbbbbb \dots$

is observed, what do we infer about \boldsymbol{v} ?

Conclusion

It's about weak fairness !

Still with

• $T_O = \{b, y\}$ • $\Phi = \{v\}$

the only way for the system to do b^{ω} is to be *unfair* to v: always enabled, never fired *HERE: diagnosis under weak fairness*

Extended Reveals+Diagnosis

Application

- $A \rightarrow B$ iff ρ 's containing A must hit B
- Used for weak diagnosis: Given an observation pattern α , are all weakly fair extensions of explanations of α faulty ?

Lemma

There is ω weakly-fair and fault-free iff there are configurations C_1, C_2 such that:

- $a mark(\mathcal{C}_1) = mark(\mathcal{C}_2)$
- C₂ is fault-free

Weak Diagnosis Framework

Setup

- Safe PN $N = (P, T, F, M_0)$ with unfolding $\mathcal{U}_N = (B, E, G, m_0, f)$ and labelling $\lambda : T \to \mathcal{A} \cup \{\varepsilon\}$
- $T_{ubs} \stackrel{\text{\tiny def}}{=} \lambda^{-1}(\{\varepsilon\})$, $T_{obs} \stackrel{\text{\tiny def}}{=} T \setminus T_{ubs}$, $E_{ubs} \stackrel{\text{\tiny def}}{=} f^{-1}(T_{ubc})$, $E_{\phi} \stackrel{\text{\tiny def}}{=} f^{-1}(\{\phi\})$ etc.
- Assume observations are Labeled Partial Orders (LPO) $lpo(C) = (S_C, <_C, \lambda_C)$ over \mathcal{A}
- obs(C) ^{def} = compat(lpo(C)): the lpo's compatible with lpo(C), i.e. labeled order extensions of lpo(C).
- C explains observation pattern α iff $\alpha \in obs(C)$
- $expl(\alpha) : \{C \mid \alpha \in obs(C)\}$

Weak Diagnosis

Observation pattern α weakly diagnoses fault ϕ iff

$$C \in expl(\alpha) \Rightarrow C \Rightarrow E_{\phi}$$

Example

Observation pattern α weakly diagnoses fault ϕ iff

$$C \in expl(\alpha) \Rightarrow C \twoheadrightarrow E_{\phi}$$

Example

Any α containing $\{a,b\}$ or intersecting $\{c,d\}$ (weakly) diagnoses ϕ since, e.g.,

$$\{e_1, e_{11}\} \quad \Rightarrow \quad \{e_4, e_4'\} \subseteq E_{\phi} \{e_6\} \Rightarrow \{e_4, e_4'\} \quad , \quad \{e_8\} \Rightarrow \{e_4, e_4'\}$$

Solving the weak diagnosis problem

Weak Diagnosis Problem

Need to decide:

$$C \in expl(\alpha) \stackrel{???}{\Longrightarrow} C \twoheadrightarrow E_{\phi}$$
(*)

Reduction

To check (*), assume w.l.o.g. $C=\bot$

Summary

- Bounded prefixes suffice to compute all succinct explanations
- Complete finite prefixes can be enriched by finitely many spoilers to exhibit witnesses for "non-diagnosis" (if they exist)

Towards weak diagnosis

- Take a marking-complete prefix B₁
- Stop unfolding at *sp-cutoff events*: any *e* such that there is *e'* < *e* satisfying, for D ^{def} = [e] \ [e'],

•
$$f(\bullet D \setminus D^{\bullet}) = f(D^{\bullet} \setminus \bullet D)$$

•
$$B_1 \cap {}^{\bullet}D = \emptyset$$

I.e. e and e' spoil exactly the same events enabled by configurations from B_1 .

Decision method

Prefixes needed

- P_{α} : contains all *succinct* explanations of α
- P¹: marking-complete
- P^2 : contains all *non-sp-cutoffs*; $P^1 \sqsubseteq P^2$

ALL ARE FINITE !!

Encoding in SAT

$$\begin{aligned} & config(l,\mathcal{P}) \stackrel{\text{\tiny def}}{=} (\bigwedge_{e \in E} \bigwedge_{e' \in \bullet \bullet e} (v_e^l \Rightarrow v_{e'}^l)) & \wedge \\ & (\bigwedge_{c \in B, \{e_1, \dots, e_n\} = c^{\bullet}} amo(v_{e_1}^l, \dots, v_{e_n}^l)) & \wedge & (\bigwedge_{c \in B} v_c^l \Leftrightarrow (\bigwedge_{e \in \bullet c} v_e^l \wedge \bigwedge_{e \in c^{\bullet}} \neg v_e^l)) \end{aligned}$$

- Similarly : configuration containment, reachability, enabling, spoiling, explanation,...
- Diagnosis checkable with SAT solvers

Weak Fairness is So Revealing !

- 1 What Occurrence Nets Reveal
 - 2 Reveal Your Faults: Weak Diagnosis
- ③ WF Diagnosability
 - 4) Conclusion

Checking Diagnosability under WF [ACSD 2014]

Effect of concurrent component on the right

- Only t_5 destroys diagnosability
- Once t_3 is WF, net is diagnosable

A non-WF-Diagnosable Net ...

Def: WF-diagnosability

An LPN is WF-diagnosable iff each infinite WF execution σ containing a fault has a finite prefix $\hat{\sigma}$ such that every infinite WF execution r with $\lambda(\hat{\sigma}) \sqsubseteq \lambda(r)$ contains a fault.

Note:

Fault Transition depicted in black

... becomes WF-diagnosable with a different fault

Def: WF-diagnosability

An LPN is WF-diagnosable iff each infinite WF execution σ containing a fault has a finite prefix $\hat{\sigma}$ such that every infinite WF execution r with $\lambda(\hat{\sigma}) \sqsubseteq \lambda(r)$ contains a fault.

Note:

Fault Transition depicted in black

Checking WF-Diagnosability: Fault Tracking Net

FTN		
• Extend N with		
Note:		
FTN bisimilar to N		

Checking WF-Diagnosability: Verifier Net

Verifier 1

- Synchronize FTN N_{Ft} with copy N'_{Ft} of itself on observable transitions
- ${\ensuremath{\bullet}}$ Remove from product all observable transitions of N_{Ft} .
- Remove from Ns all observable and fault transitions of N'_{Ft} .
- Call the resulting net V.
- N is diagnosable iff $diag = \Box \overline{p_f}$ holds in V

Checking WF-Diagnosability: Verifier Net

Verifier 2

- Synch FTN N_{Ft} with copy N'_{Ft} of itself on obs; fused transitions non-WF
- Turn all observable transitions of N_{Ft} into stubs.
- Remove all observable and fault transitions of $N_{Ft}^{\prime};$ all remaining transitions from $N_{Ft}^{\prime}{\rm are \ non-WF}$
- Call the resulting net V_{WF} .
- N is diagnosable iff $diag = \Box \overline{p_f} \lor \neg stub_monitor$ holds in V_{WF}

Weak Fairness is So Revealing !

- 1 What Occurrence Nets Reveal
- 2 Reveal Your Faults: Weak Diagnosis
- 3 WF Diagnosability

Conclusion

Weak Fairness

- Impact on semantics captured by structural relations
- Exploited in diagnosis ...
- ... and diagnosability

Temporal vs. logical view of event structures

- (\leq , #, co) vs (\triangleright , # and ind)
- Extended reveals \rightarrow

To Do

- Link with Opacity / Non-interference
- Use in Control / Test / ... ?
- Extend to contextual, timed, probabilistic models ...

THANKS !