Reach and get rich: pseudo-polynomial algorithms for total-payoff games

Thomas Brihaye¹, Gilles Geeraerts², Axel Haddad¹ (**me**), Benjamin Monmege²

 1 Université de Mons 2 Université de Bruxelles European Project FP7-CASSTING

Teaser

- **Variant** of usual quantitative games
- Add a reachability objective
- We want to **compute** the value
- \bullet Game extension of **shortest path** problem
- Solve an **open problem** for total-payoff games

2-player quantitative games on graph

Eve plays against **Adam**. The **arena** is:

- a finite **graph**,
- where the vertices belong either to Eve or Adam,
- and each edge has a weight.

During a **play**:

- A **token** is moved along the edges
- by the player that owns the current state.
- The play is **infinite**.

Payoff function

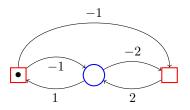
Defines a value of a play.

Total Payoff: the limit of the **sums** of the weigths.

Mean Payoff: the limit of the **average** of the weights.

(actually we take the limit inferior)

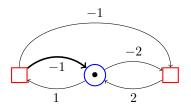
Eve wants to **minimize** it, **Adam** wants to **maximize** it.



Weights:

Sums:

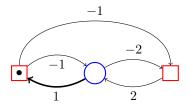
Average:



 $\textbf{Weights:} \quad {\scriptstyle -1}$

 $\textbf{Sums:} \quad \textbf{-}1$

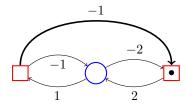
Average: -1



 $\textbf{Weights:} \quad {\scriptstyle -1} \qquad 1$

Sums: -1 0

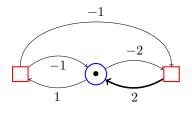
Average: -1



Weights: -1 1 -1

Sums: -1 0 -1

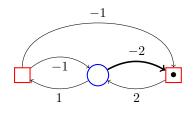
Average: -1 0 -0.333



Weights: -1 1 -1 2

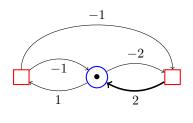
Sums: -1 0 -1 1

Average: -1 0 -0.333 0.25



Sums: -1 0 -1 1 -3

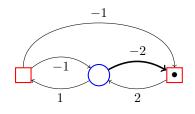
Average: -1 0 -0.333 0.25 -0.2



Weights: -1 1 -1 2 -2 2

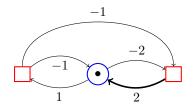
Sums: -1 0 -1 1 -1 1

Average: -1 0 -0.333 0.25 -0.2 0.166

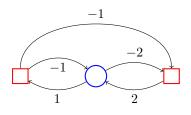


Weights:	-1	1	-1	2	-2	2	-2
Sums:	-1	0	-1	1	-1	1	-1

Average: -1 0 -0.333 0.25 -0.2 0.166 -0.143



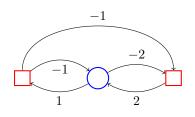
Weights:	-1	1	-1	2	-2	2	-2	2
Sums:	-1	0	-1	1	-1	1	-1	1
Average:	-1	0	-0.333	0.25	-0.2	0.166	-0.143	0.125



 Weights:
 -1
 1
 -1
 2
 -2
 2
 -2
 2
 -2
 2
 ...

 Sums:
 -1
 0
 -1
 1
 -1
 1
 -1
 1
 ...

 Average:
 -1
 0
 -0.333
 0.25
 -0.2
 0.166
 -0.143
 0.125
 ...



Weights: -1 1 -1 2 -2 2 -2 ···

Sums: -1 0 -1 1 -1 1 -1 1 ···

Average: -1 0 -0.333 0.25 -0.2 0.166 -0.143 0.125 · · ·

Total Payoff: -1 Mean Payoff: 0

Strategies

Strategie: given the **past**, what choice to make.

Value of the strategie σ from vertex v:

- For **Eve**: **supremum** of the values of the plays in $\mathsf{Play}(v,\sigma)$,
- For Adam: infimum of the values of the plays in $Play(v, \sigma)$,

(i.e.,the worst thing that can happen to me)

Value of a vertex v:

- For **Eve**: **infimum** value over **her** strategies.
- For **Adam**: **supremum** value over **his** strategies.

(i.e., the best thing that I can do)

Determinacy. The **Eve**-value and the **Adam**-value of any vertex v are **equal**. [consequence of Martin 75]

Well-known results

Positional strategy: strategy that depends only on the current node.

There exists **optimal positional strategies** for both players [Ehrenfeucht, Mycielski 79] [Gimbert, Zielonka 04].

Deciding whether the value of a vertex is $\leq K$ is in $\mathbf{NP} \cap \mathbf{coNP}$ (no known algorithm in \mathbf{P}).

For Mean Payoff one can compute the values in pseudo-polynomial time [Zwick, Paterson 95].

Our motivation

"The objective is to develop a novel approach for analysing and designing collective adaptive systems in their totality, by setting up a game theoretic framework."

Priced Timed Games

models?

→ Small energy trading network

Reachability Quantitative Games

Reachability quantitative games

Take:

- an arena,
- some target vertices T,
- a payoff function P.

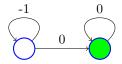
Introduce a new payoff function **T-RP**. The value of a play π is:

- If π does not reach a target: $\mathbf{T}\text{-}\mathbf{RP}(\pi) = +\infty$
- If π reaches a target $\pi = v_1 \cdots v_k \mathbf{t} \ v_{k+2} \cdots$:

$$\mathbf{T}$$
- $\mathbf{RP}(\pi) = \mathbf{P}(v_1 \cdots v_k).$

Eve wants to **reach** a **target** while **minimizing** the payoff.

Adam wants to **avoid** the **target** or **maximize** the payoff.



 $Val = -\infty$ **but** no optimal strategy!

What is known

These game are **determined** [consequence of Martin 75].

Best strategies are of the form:

- play for a long time a positional strategy
- and then **reach** the target

[Filiot, Gentilini, Raskin 12].

Deciding whether the value of a vertex is $\leq K$ is in $\mathbf{NP} \cap \mathbf{coNP}$.

Total Payoff, Non-negative weights. In this case, **positionally determined**, value and optimal strategies **can be computed** in **P** (modified Dijkstra algorithm) [Kachiyan et Al. 08].

Contributions

Reachability mean-payoff games are equivalent to mean-payoff game.

 \Rightarrow One can compute the values in pseudo-polynomial time.

A value iteration algorithm for reachability total-payoff games:

 \Rightarrow it computes the values in pseudo-polynomial time.

A value iteration algorithm for total-payoff games (also pseudo-polynomial).

Computing the attractor

Attractor: all the vertices from which **Eve** has a strategy to reach the **targets**.

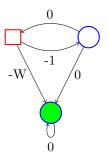
Eve ensures a value $< +\infty$ if and only if the plays never leave the attractor.

Computing the attractor is in \mathbf{P} .

 \Rightarrow We always assume that we have **removed** all the vertices **not in the attractor**.

An example

Even when **optimal** strategies exists, they might need memory!



An example

Even when **optimal** strategies exists, they might need memory!



Optimal strategy for **Eve**: go \leftarrow W times and then go \downarrow Optimal strategy for **Adam**: go \downarrow

Compute $\mathsf{Val}^{\leqslant i}$ the value mapping when the game stops after i steps.

Compute $Val^{\leqslant i}$ the value mapping when the game stops after i steps.

 $\mathsf{Val}^{\leqslant 0} = \mathsf{Everything} \ \mathsf{is} + \infty, \ \mathsf{or} \ \mathsf{0} \ \mathsf{for} \ \mathsf{the} \ \mathsf{targets} \ \mathsf{(the} \ \mathsf{greatest} \ \mathsf{possible} \ \mathsf{value} \ \mathsf{function)}$

 $\mathsf{Val}^{\leqslant i+1} = \mathcal{F}(\mathsf{Val}^{\leqslant i})$ with \mathcal{F} a continuous monotonic function.

 \Rightarrow the sequence converges towards the greatest fixpoint,

Compute $Val^{\leqslant i}$ the value mapping when the game stops after i steps.

 $Val^{\leq 0} = \text{Everything is } +\infty$, or 0 for the **targets** (the **greatest** possible value function)

 $\mathsf{Val}^{\leqslant i+1} = \mathcal{F}(\mathsf{Val}^{\leqslant i})$ with \mathcal{F} a continuous monotonic function.

 \Rightarrow the sequence converges towards the **greatest fixpoint**,

Furthermore, the sequence stabilises (or value $-\infty$ is detected) after at most a pseudo-polynomial number of steps.

Compute $\mathsf{Val}^{\leqslant i}$ the value mapping when the game stops after i steps.

 $Val^{\leq 0} = \text{Everything is } +\infty$, or 0 for the **targets** (the **greatest** possible value function)

 $\mathsf{Val}^{\leqslant i+1} = \mathcal{F}(\mathsf{Val}^{\leqslant i})$ with \mathcal{F} a continuous monotonic function.

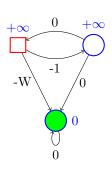
 \Rightarrow the sequence converges towards the **greatest fixpoint**,

Furthermore, the sequence stabilises (or value $-\infty$ is detected) after at most a **pseudo-polynomial** number of steps.

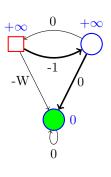
This **greatest fixpoint** is equal to Val.

 \Rightarrow A $\mbox{{\bf pseudo-polynomial}}$ algorithm for computing the value!

 $Val^{\leqslant i+1} = do$ one move, and get the values of $Val^{\leqslant i}$.

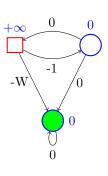


$+\infty$	$+\infty$	0



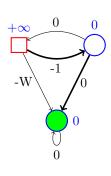
$+\infty$	$+\infty$	0

 $Val^{\leqslant i+1} = do$ one move, and get the values of $Val^{\leqslant i}$.

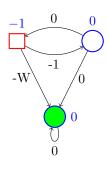


$+\infty$	0
0	0

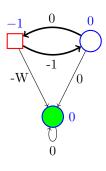
 $Val^{\leqslant i+1} = do$ one move, and get the values of $Val^{\leqslant i}$.



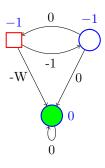
$+\infty$	0
0	0



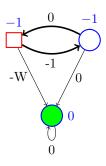
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0



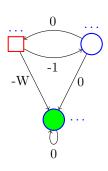
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0



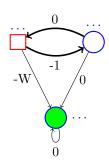
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0



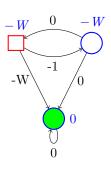
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0



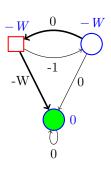
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:



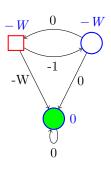
$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:



$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:
-W	-W	0

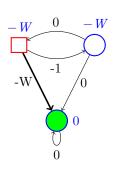


$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:
-W	-W	0



$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:
-W	-W	0
-W	-W	0

 $Val^{\leqslant i+1} = do$ one move, and get the values of $Val^{\leqslant i}$.



$+\infty$	$+\infty$	0
$+\infty$	0	0
-1	0	0
-1	-1	0
:	:	:
-W	-W	0
-W	-W	0

optimal positional strategy for **Adam**

Back to classical total-payoff games

No known efficient algorithm for computing the value of total-payoff games (without the reachability condition).

We use reachability total-payoff games to solve total-payoff games.

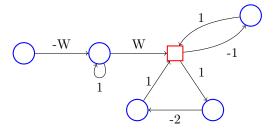
Introduce a $pseudo-polynomial\ time\ {\it transformation\ from\ TP}\ to\ {\it RTP}$

 \Rightarrow A pseudo-polynomial time iteration algorithm for computing the value of total-payoff games.

How does it work

(Recall that
$$\mathsf{TP}(v_1v_2\cdots) = \liminf \mathsf{Sum}(v_1\cdots v_i)$$
)

- At each step **Eve** can ask to stop the game,
- Adam can refuse K times,
- **K** is pseudo-polynomial (here take $\mathbf{K} = W + 2$).



• This can be encoded in a pseudo-polynomial size RTP game.

(actually, we do not need to compute the whole game)

Conclusion

- Reachability mean-payoff games are equivalent to mean-payoff games (pseudo-polynomial algorithm)
- Value iteration algorithm for reachability total-payoff games (pseudo-polynomial algorithm)
- Value iteration algorithm for total-payoff games (pseudo-polynomial algorithm)
- More: Acceleration
- More: Finding good strategies for Eve and Adam in RTP games and in TP games.
- Thanks! ... Questions?