Building a Symbolic Model Checker from Formal language Description *SDD* and StrataGEM

Didier Buchs and Edmundo Lopez

Geneva University

5 mars 2015

1/34

Introduction : Context

Motivations

- Difficult to built your own symbolic model checker
- Hard to reuse existing work
 - Semantic construction
 - Optimisation
 - Decision Diagram encoding

$M \models \Phi \Leftrightarrow DDCompute_{\Phi}(Enc_{DD}(M))$

Introduction : Context

A E F A E F

- Remark :
 - SAT more popular i.e. modular and based on propositional logic :

 $M \models \Phi \Leftrightarrow SatCompute(Enc_{prop}(\Phi) \land Enc_{prop}(M))$

Introduction : Context

- Observation :
 - Large semantic gap between analysed language and DD
 - Decision Diagram based on set of items : Enc : ℘(States) → DD Enc(s₁ ∪ s₂) = Enc(s₁) ∪_{DD} Enc(s₂)
 - Can we describe them state by state?
 - Can we extend the computations to state efficiently?

 $M \models \Phi \Leftrightarrow DDCompute(Enc_{DD}(RewTr(\Phi)) \circ Enc_{DD}(RewTr(M)))$

Introduction : Topics

- Points to address
 - How to express Semantics?
 - What Model Checking technique?
 - How to express Computations?

Introduction : Topics

- Points to address
 - How to express Semantics?
 - What Model Checking technique?
 - How to express Computations?
- Formal Basis
 - ΣDD
 - Term Rewriting
 - Strategies

5/34

Introduction : Global view

Formalism Abstract Semantics (SOS Rules) User defined Our approach translation Set rewriting (Strategies) This Automated translation Presentation Symbolic Structures (Decision Diagrams)

6/34

* E + * E +

Credits

- Prof invité (2007) at LIP6,
 - SDD : Jean-Michel Couvreur and Yann Thierry-Mieg
 - Operations : Alexandre Hamez and Alban Linard
- Collaboration
 - *PolyDD* (2010) : Alban Linard, Emmanuel Paviot-Adet and Fabrice Kordon.
- Work done at SMV, University of Geneva
 - ΣDD (2009) : Steve Hostettler and Edmundo Lopez
 - Alpina (2012) : Steve Hostettler and Alexis Marechal

Terms

• = • •

- A signature $\Sigma = \langle S, Op \rangle$. $S = \{bool, nat, list\}$ $Op = \{ 0 : \rightarrow nat;$ $s : nat \rightarrow nat;$ $+ : nat, nat \rightarrow nat; \}$
- Inductively defined terms : T_{Σ} 0 + s(s(0))
- Inductively defined terms with variables : $T_{\Sigma}(X) = 0 + s(s(x))$

SAY

Encoding : A 'n' digit counter

Signature null : \rightarrow counter; digit : nat10, counter \rightarrow counter;

Terms :

$digit(d_3, digit(d_2, digit(d_1, null)))$

Rewriting

Rewrite rule : $t_l, t_r \in T_{\Sigma}(X) : t_l \rightsquigarrow t_r$

Example(functional rules) : Rule 1 : $+(0, x) \rightarrow x$ Rule 2 : $+(s(x), y) \rightarrow s(+(x, y))$

rewriting as computation of semantics $+(s(0), s(0)) \rightsquigarrow s(+(0, s(0))) \rightsquigarrow s(s(0)))$

Rewriting for states

SMY

Example(partial/basic rules) :

$$digit(X, C) \rightsquigarrow digit(s(X), C)$$

$$digit(X, digit(s(s(s(s(s(s(s(s(s(0)))))))), C))) \\ \sim digit(s(X), digit(0, C)))$$

What about combining these rules?

Semantics defined on basic rewriting and strategies : $Reach_M(s_0) = \{s' | s_0 \rightsquigarrow . \rightsquigarrow . s'\} = \{s_1, s_2, ..., s_n\}$

Set of terms

We propose to consider set of terms : $s = \{t_1, t_2, ..., t_n\}$

$$Rew(\{t_1, t_2, ..., t_n\}) = \bigcup_{t_i} Rew(t_i)$$

 Different (choice) strategies on rewriting of confluent and terminating systems produce similar results Rew_{strat}(s) = Rew_{strat}(s).

In ΣDD a structure represents a set of terms.

 $\sigma \in SIGDD_{\Sigma}$, $\sigma = enc(\{t_1, t_2, ..., t_n\})$ where $t_i \in T_{\Sigma}$ $\sigma \in SIGDD_{\Sigma}$, $dec(\sigma) = \{t_1, t_2, ..., t_n\}$ where $t_i \in T_{\Sigma}$ Encoding and decoding *inc* and *dec* are homomorphisms.

$$\forall \sigma \in \mathbb{SIGDD}_{\Sigma} \text{ , } \sigma = enc(dec(\sigma)) \\ \forall t_i \in T_{\Sigma}, \ \{t_1, t_2, ..., t_n\} = dec(enc(\{t_1, t_2, ..., t_n\}))$$

Perform rewriting on ΣDD : $Rew(s) = dec(Rew_{\Sigma DD}(enc(s)))$

Set of terms

590

→ Ξ >

$\{+(0,s(0)),+(s(0),s(0))\}$

Set of terms

∃ ≥ >

$\{+(0,s(0)),+(s(0),s(0))\}$

Normal Form

$$\begin{array}{l} \mathsf{Rule 1}:+(0,x) \rightsquigarrow x \\ \mathsf{Rule 2}:+(s(x),y) \rightsquigarrow s(+(x,y)) \\ \{ \mathsf{s(0)},\mathsf{s(s(0))} \} \end{array}$$

イロト イヨト イヨト イヨト

臣

DQC

More sharing on set of terms

Sharing/Rewriting on set of terms

Normal form : $\{s(0), s(s(0)), s(s(s(0))), s(s(s(s(0))))\}$ Rewrite of several terms in one step !

ΣDD structure

A B M A B M

Complete Atomic Boolean Algebra (CABA). A complete Boolean Algebra is a (complete distributive lattice) $\langle L, \lor, \land, 0, 1 \rangle$

equipped with a unary *complementation* operation \neg , satisfying $a \lor \neg a = 1$ and $a \land \neg a = 0$ for all $a \in L$.

Encoding Relation

A E F A E F

Definition (Encoding Relation)

The binary relation $R = \langle A, B, G \rangle$ is encoded by $R' = \langle A', B', G' \rangle$, where $A' \subseteq \mathcal{P}(A)$ and $B' \subseteq \mathcal{P}(B)$, if and only if one of the following holds :

•
$$G = \varnothing$$
 and $G' = \{(A, \varnothing)\},\$

• $(x,y) \in G \Leftrightarrow (X,Y) \in G'$ with $x \in X$ and $y \in Y$

Encoding Relation :example

 $G = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3)\},$ we exhibit the encoding :

$$\begin{array}{rcl} \mathcal{A}' &=& \{ & \{1\}\,, & \{2\}\,, & \{3,4\}\,\} \\ \mathcal{B}' &=& \{ & \{1\}\,, & \{1,2\}\,, & \{1,2,3\}\,\} \\ \mathcal{G}' &=& \{ & (\{1\}\,, \{1\}), & (\{2\}\,, \{1,2\}), & (\{3,4\}\,, \{1,2,3\})\,\} \end{array}$$

• • = • • = • = =

Injective partitionned functions (IPF)

SMY

く 同 ト く ヨ ト く ヨ ト

$$\Delta(A, B) = \{ f : \pi_f \to \mathcal{P}(B) \setminus \mathbb{O}_B \mid \pi_f \subset \mathcal{P}(A) \setminus \mathbb{O}_A \text{ and} \\ \forall X, Y \in \pi_f : X \neq Y \implies \\ X \land Y = \mathbb{O}_A \text{ and } f(X) \neq f(Y) \} \\ \cup \{\mathbb{1}_A \mapsto \mathbb{O}_B\} \}$$

Didier Buchs and Edmundo Lopez Building a Symbolic Model Checker from Formal language Description/5 mars 2015 21/34

IPF as CABA

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

The CABA structure of $\mathcal{B}(A, B)$ \Longrightarrow $\Delta(A, B)$ is CABA.

- \cup , \cap on $\Delta(A,B)$
- \neg on $\Delta(A, B)$

n-ary relation : currying (IIPF)

As example, we define the ternary relation the-sum-is-pair = $\langle A, B, C, G \rangle$, with $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3\}$, $C = \{1, 2\}$ and

$$egin{aligned} {G} = \{ (1,1,2), (1,2,1), (1,3,2), (2,1,1), (2,2,2), (2,3,1), \ & (3,1,2), (3,2,1), (3,3,2), (4,1,1), (4,2,2), (4,3,1) \} \end{aligned}$$

We can encode this relation in an IPF $f \in \Delta_{A,B,C}$:

ΣDD

Definition (ΣDD)

Let $\Sigma = \langle S, F \rangle$ and X be a set of variables. The set of ΣDD over Σ and X consists of a family $(\Sigma DD_s^{\Sigma,X})_{s \in S}$, where each $\Sigma DD_s^{\Sigma,X}$ is limit of the sequence defined as : • $\Sigma DD_s^0 = \Delta_{F_{\epsilon,s} \cup X_s}$ • $\Sigma DD_s^{n+1} =$ $\Sigma DD_s^n \cup \biguplus_{F_{s_1...s_k,s} \in F} \Delta(F_{s_1...s_k,s}, \Delta_{\Sigma DD_{s_1}^n,...,\Sigma DD_{s_k}^n})$ Introduction Motivation Reminder Conclusion

Aim of the rest of this presentation

Establish links between Rewriting techniques and operations on decision diagrams. We would have **performance** in mind.

Reminder on Rewriting a la TOM

・ 「「・ ・ 」 ・ ・ 」 ・ ・ 」

Based on elementary rewrite rules, we can apply on terms a basic rewrite step.

 $Rew_{Ax}[t] = \dots$

$$\exists \sigma, \\ (\sigma(l) = t) \Rightarrow \textit{Rew}_{A \times \cup \{ < l, r > \}}[t] = \sigma(r)$$

Reminder on Strategies

Way to find the context of a rewriting step!

 $Strat(S) : (T_{\Sigma} \cup \{fail\}) \rightarrow (T_{\Sigma} \cup \{fail\})$ More generally :

$$Strat(S): (\wp(T_{\Sigma}) \cup \{fail\}) o \wp(T_{\Sigma}) \cup \{fail\}$$

If Strat(s) is defined, terms t will be rewritten with : $Strat(Rew_{A_X})[t]$

Obviously :

$$(S)[fail] = fail$$

A E F A E F

27/34

Reminder on Strategies : Basic operations 1 (TOM)

$$(Identity)[t] = t$$

 $(Fail)[t] = fail$
 $(Sequence(s1, s2))[t] = fail \Leftarrow (s1)[t] = fail$
 $(Sequence(s1, s2))[t] = (s2)[t'] \Leftarrow (s1)[t] = t'$

$$(Choice(s1, s2))[t] = t' \Leftarrow (s1)[t] = t'$$

 $(Choice(s1, s2))[t] = (s2)[t] \Leftarrow (s1)[t] = fail$

28/34

Strategies on sets

SM

A B M A B M

Natural extension

$$S[{t1,,tn}] = {S[t1],,S[tn]}$$

Set strategies

 $Union(S1, S2)[T] = S1[T] \cup S2[T]$, if both succeed

$Fixpoint(S)[T] = \mu T.S[T]$

Restrictions

4 ∃ ≥ 4

30/34

terminating

$$egin{aligned} & x \rightsquigarrow s(x) \ & s(x) \leadsto + (x,y) \ & + (x,y) \leadsto + (y,x) \end{aligned}$$

linear

$$+(x,x) \rightsquigarrow x$$

 $+(x,y) \rightsquigarrow +(x,x)$

no-condition

$$x > y \Rightarrow s(x) - s(y) = x - y$$

Example of strategies

Innermost Evaluation :

$$Try(S) = Choice(S, Identity)$$

$Innermost(S) = \mu x.Sequence(All(x), Try(Sequence(S, x)))$

Computation on ΣDD

- ΣDD employs homomorphisms (set regularity) for implementing rewriting, $Rew_{\Sigma DD} \in Hom$
- These homomorphisms can be defined for strategies : *Rew_{strat,ΣDD}*.
- On terminating and confluent systems ΣDD rewriting respects sets : Rew_{strat,ΣDD} ∈ Hom for deterministic strat strategies

Some strategies are better (performance) than others as in rewriting and similarly in decision diagrams.

- 4 同 1 - 4 回 1 - 4 回 1

• IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD

- IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD
- can we compose Rew, ... easily? by strategies?

- IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD
- can we compose Rew, ... easily? by strategies?
- Can we define Design Patterns (Edmundo's talk)?

- IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD
- can we compose Rew, ... easily? by strategies?
- Can we define Design Patterns (Edmundo's talk)?

Thank You for your attention !

イロト イポト イヨト イヨト

Э