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Main Contributions

• A new method for improving efficiency of algorithms solving
hard problems,

• A new reduction method for planning,

• Application of the results in the tool PlanICS.
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Related Work

• Planning methods and tools: OWLS-Xplan, OWLS-MX,
WSMO, PDDL3, PlanICS, ...,

• Abstraction methods [Cousot, Cousot, ....],

• Partial order reductions [Valmari, Peled, Godefroid, ...],

• Symmetry reductions [Clarke, Emerson, Jha, Sistla, ..... ],

• CEGAR – Counterexample Guided Abstraction [Clarke et
al.],

• and others.
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General idea – intuition

• D – a domain to find a plan (problem is NP-complete),
• D’ – an abstract domain in which finding a plan is easy,
• a plan in D’ does not need to correspond to a plan in D,
• a none-plan in D’ corresponds to a none-plan in D,
• find (the) none-plans in D’,
• prune D from (the) none-plans of D’,
• search for (the) plans in D pruned.
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Application to planning in PlanICS

• Given an ontology of object types and services (OWL-like
language),

• Given a user query: (initial worlds, final worlds),
• A world – a set of objects (each object has a type and

attributes),
• A service: (in, inout, out, pre, post), where in, inout, out

are sets of objects,
• pre – a boolean formula over the object attributes of in and

inout,
• post – a boolean formula over the object attributes of inout

and out.

Task: Find all plans from some initial to some final world.
This problem is NP-complete.
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Service composition in PlanICS

preconditions on object attributes postconditions on object attributes

Initial
world

World 0 World 1Service A Service B Service C

Final
world

preA

postA preB postB preC

postC

Planning – composition of services (a huge number of plans)
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Simplifying the planning domain

Idea – simplify services and worlds:
• the simplified objects do not have attributes,
• a simplified world – a multiset of objects,
• a simplified service – (precondition, effect),
• precondition – a multiset of objects (objects required),
• effect – a multiset of objects (new objects added).

• B – a set of services, B’ – the set of simplified services,
• Fact: If B’ cannot be composed into a plan, then B cannot

be composed into a plan,
• Goal: synthesize constraints of non-composability.
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(Simplified) Planning Domain

(Simplified) Planning Domain P = (WH,FI ,FG,Act):
• WH ⊆ Nn – a set of abstract worlds (multisets),
• FI ,FG ⊆ WH – initial, final worlds,
• Act – a set of actions (simplified services).

where n is the number of all types of the objects.

For each act ∈ Act :
• pre(act) – precondition of act,
• eff(act) – effect of act.

pre(act), eff(act) ∈ Nn.

Action act ∈ Act is enabled in ω ∈ WH iff pre(act) ≤ ω and
the results of firing act: ω act→ ω + eff(act)
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Plans

Given P = (WH,FI ,FG,Act), B ⊆ Act

• π ∈ Π(ω,B, ω′) iff

π = ω0
act1→ ω1

act2→ . . .
actn−1→ ωn−1

actn→ ωn

where ω0 = ω, ωn ≥ ω′, and {act1, . . . , actn} ⊆ B

•
⋃

ωI∈FI

⋃
ωF∈FG

Π(ωI ,B, ωF ) – the plans over B

Each plan starts from an initial world and its last world covers a
final world.
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Exemplary planning domain

Vehicle

Car Boat

Amphibian

Vehicles’ inheritance

Actions:
• makeVehicle:

needs nothing, builds vehicle
• makeCar :

needs vehicle, builds car
• makeBoat :

needs vehicle, builds boat
• makeAmphibian:

needs boat and car, builds
amphibian

• tinker :
needs amphibian and car, builds
two amphibians
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Exemplary planning domain, ct’d

Vehicle

(1,0,0,0)

Car

(1,1,0,0)

Boat

(1,0,1,0)

Amphibian

(1,1,1,1)

Vehicles’ inheritance

Order of the objects:
(Vehicle,Car ,Boat ,Amphibian)

• makeAmphibian:
needs boat and car, builds
amphibian

pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(2,1,1,0)

eff(makeAmphibian) = (1,1,1,1)
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Exemplary planning domain, ct’d

Vehicle

Car Boat

Amphibian

Vehicles’ inheritance

Actions:
• pre(makeVehicle) = (0,0,0,0)

eff(makeVehicle) = (1,0,0,0)

• pre(makeCar) = (1,0,0,0)
eff(makeCar) = (1,1,0,0)

• pre(makeBoat) = (1,0,0,0)
eff(makeBoat) = (1,0,1,0)

• pre(makeAmphibian)=(2,1,1,0)
eff(makeAmphibian) = (1,1,1,1)

• pre(tinker)=(2,2,1,1)
eff(tinker) = (2,2,2,2)

ωI = (0,0,0,0) (one initial world)
ωF = (0,0,0,1) (one final world)
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Classifying actions

Vmax - the largest number occurring in pre(act) for act ∈ Act .

enact(A) = {act ∈ Act |
∑

act′∈A

Vmax · eff(act′) ≥ pre(act)}.

all actions that can be enabled by firing actions from A ⊆ Act ,

ω ∈ WH, i > 0
• Gω

0 = {act ∈ Act | pre(act) ≤ ω} – the actions enabled in ω,
• Gω

i+1 = enact(Gω
i ) – the actions enabled in i–th step

• Hω
0 = Gω

0 ,
• Hω

i+1 = Gω
i+1 \Gω

i – the actions newly enabled in i–th step.
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Classifying actions, ct’d

ω, ω′ ∈ WH

kgoal(ω, ω′) = min({k ∈ N |
∑

act∈Gω
k

Vmax · eff(act) ≥ ω′})

the minimal step at which greedily fired actions cover ω′.

Lemma A
• kgoal(ω, ω′) <∞ iff Π(ω,Act , ω′) 6= ∅,
• kgoal(ω, ω′) can be computed in time O(|Act |2 · n).

Planning in P is easy.
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Classifying actions, cont’d

HωI
0

HωI
1

HωI
kgoal(ωI ,ωF )

T E

R

GωI
klimit(ωI )

ωI ∈ FI , ωF ∈ FG, klimit(ωI) = min({k ∈ N | HωI
k = ∅})

• E = Act \GωI
klimit(ωI)

– useless actions can’t be enabled

• G = GωI
kgoal(ωI ,ωF )

– sufficient actions can cover goal

• R = {act ∈ GωI
klimit(ωI)

| pre(act) ≥ ωF} – redundant actions

• T = GωI
klimit(ωI)

\ (GωI
kgoal(ωI ,ωF )

∪R) – potentially useful acts
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Classifying actions, cont’d

Lemma B
Let A ⊆ Act . If there is a plan over A, then A contains at least
one element from HωI

i for all 0 ≤ i ≤ kgoal(ωI , ωF )

First easy reductions:
• throw away redundant (e.g., tinker ) and useless actions,
• block all sets of actions that do not satisfy Lemma B.

More reductions: consider none-plans.
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None-plans

A ⊆ Act , ω, ω′ ∈ WH

Z(ω,A, ω′) := {B ⊆ A | Π(ω,B, ω′) = ∅}

None-plan: a set of actions B, which is not a support of a plan
starting at ω and covering ω′.

I(ω) := {ω′ | ‖ω′‖ = 1 ∧ ω ≥ ω′} – unitary coord. vects. of ω

e.g., I((2,1,1,0)) = {(1,0,0,0), (0,1,0,0), (0,0,1,0)}
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Characterisation of none-plans

Theorem

Z(ω,A, ω′) =
⋃

ω′′∈I(ω′)
ω 6≥ω′′

⋂
act∈A

eff(act)≥ω′′

(
D(ω,A, act) ∪ 2A\{act})

where D(ω,A, act) = {B ∪ {act} | B ∈ Z(ω,A \ {act}, pre(act))}
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Characterisation of none-plans, ct’d

Theorem

Z(ω,A, ω′) =
⋃

ω′′∈I(ω′)
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⋂
act∈A

eff(act)≥ω′′

(
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To find all B ⊆ A that do not make a plan from ω to cover ω′

take a coordinate ω′′ of ω′ that needs to be covered
for each action act that could cover ω′′ when fired
ensure that act cannot be enabled and take it
or throw act away.
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None-plans: tree encoding
{makeVehicle,makeCar ,makeBoat}

target : (2,1,1,0)

{makeVehicle,makeCar ,makeBoat}
target : (1,0,0,0)

{makeVehicle,makeCar ,makeBoat}
target : (0,1,0,0)

{makeVehicle,makeCar ,makeBoat}
target : (0,0,1,0)

{makeVehicle,makeBoat}
target : (1,0,0,0)

. . .. . .

. . .

. . .. . .

makeCar

Z((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat}, (2, 1, 1, 0)) =⋃
ω∈I((2,1,1,0))

Z((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat}, ω) =

D((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat},makeCar) ∪ 2A\{makeCar} ∪ . . .
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None-plans: the full tree unfolding
acts: makeVehicle, makeCar, makeBoat, makeAmphibian

trgt: (0, 0, 0, 1)

acts: makeVehicle, makeCar, makeBoat, makeAmphibian
trgt: (0, 0, 0, 1)

acts: makeVehicle, makeCar, makeBoat
trgt: (2, 1, 1, 0)

 makeAmphibian

acts: makeVehicle, makeCar, makeBoat
trgt: (1, 0, 0, 0)

acts: makeVehicle, makeCar, makeBoat
trgt: (0, 1, 0, 0)

acts: makeVehicle, makeCar, makeBoat
trgt: (0, 0, 1, 0)

acts: makeCar, makeBoat
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

 makeCar

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

 makeCar

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

acts: makeBoat
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle
trgt: (1, 0, 0, 0)

acts: 
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

acts: makeCar
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle
trgt: (1, 0, 0, 0)

 makeCar

One can stop unfolding at depth k to underapproximate the
none-plan space.
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Back to the original domain

SMT-formulae encoding:
• AP – encoding of the original domain plan space

(courtesy of PlanICS),
• CL – blocking sets following from Lemma B,
• NOPk – encoding of the none-plan space unfolding up to

k ∈ N ∪ {ω}

A new encoding in the original domain plan space:

ÃP
k

= AP ∧ CL ∧ ¬NOPk

A longer formula: easier or more difficult for an SMT-solver?
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Experimental results

Setup:
• random ontologies produced by Ontology Generator
• two experiments/ontology:

First – single plan synthesis
Total – all plan synthesis

Results for reduction:
• First – usually substantial speedup at some depth
• Total – always substantial speedup at some depth
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Experimental results, ct’d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 %

50 %

100 %

timeout of Total

benchmark id

N
oR

ed
Ti

m
e−

B
es

tR
ed

Ti
m

e
N

oR
ed

Ti
m

e
·1

00
%

First
Total

NoRedTime – time without reduction
BestRedTime – best time with reduction
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Conclusions

• A new method for improving efficiency of algorithms solving
hard problems,

• A new reduction method for planning,

• Application of the results in the tool PlanICS: quite
impressive improvement in some cases.

26 / 27



Thank you!
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