Generating None-Plans in Order to Find Plans ${ }^{1}$

Wojciech Penczek, Michał Knapik, Artur Niewiadomski

Institute of Computer Sciences, PAS, Warsaw, and Siedlce University, Poland
MeFoSyLoMa, PARIS, the 3rd of July 2015
${ }^{1}$ Accepted to SEFM'15

Outline

(1) Introduction
(2) Planning in PlanICS
(3) Simplified Planning Domain
(4) Plans and None-plans
(5) Synthesis of None-Plans
(6) Applying None-Plans to Find Plans
(7) Experimental Results

Main Contributions

- A new method for improving efficiency of algorithms solving hard problems,
- A new reduction method for planning,
- Application of the results in the tool PlanICS.

Related Work

- Planning methods and tools: OWLS-Xplan, OWLS-MX, WSMO, PDDL3, PlanICS, ...,
- Abstraction methods [Cousot, Cousot,],
- Partial order reductions [Valmari, Peled, Godefroid, ...],
- Symmetry reductions [Clarke, Emerson, Jha, Sistla,],
- CEGAR - Counterexample Guided Abstraction [Clarke et al.],
- and others.

General idea - intuition

- D - a domain to find a plan (problem is NP-complete),
- D^{\prime} - an abstract domain in which finding a plan is easy,
- a plan in D' does not need to correspond to a plan in D,
- a none-plan in D' corresponds to a none-plan in D,
- find (the) none-plans in D',
- prune D from (the) none-plans of D',
- search for (the) plans in D pruned.

Application to planning in PlanICS

- Given an ontology of object types and services (OWL-like language),
- Given a user query: (initial worlds, final worlds),
- A world - a set of objects (each object has a type and attributes),
- A service: (in, inout, out, pre, post), where in, inout, out are sets of objects,
- pre - a boolean formula over the object attributes of in and inout,
- post - a boolean formula over the object attributes of inout and out.

Task: Find all plans from some initial to some final world. This problem is NP-complete.

Service composition in PlanICS

Planning - composition of services (a huge number of plans)

Service composition in PlanICS

Planning - composition of services (a huge number of plans)

Simplifying the planning domain

Idea - simplify services and worlds:

- the simplified objects do not have attributes,
- a simplified world - a multiset of objects,
- a simplified service - (precondition, effect),
- precondition - a multiset of objects (objects required),
- effect - a multiset of objects (new objects added).
- B - a set of services, B' - the set of simplified services,
- Fact: If B' cannot be composed into a plan, then B cannot be composed into a plan,
- Goal: synthesize constraints of non-composability.

(Simplified) Planning Domain

(Simplified) Planning Domain $\mathcal{P}=\left(\mathcal{W}_{\mathcal{H}}, F_{l}, F_{G}\right.$, Act $)$:

- $\mathcal{W}_{\mathcal{H}} \subseteq \mathbb{N}^{n}$ - a set of abstract worlds (multisets),
- $F_{l}, F_{G} \subseteq \mathcal{W}_{\mathcal{H}}$ - initial, final worlds,
- $A c t$ - a set of actions (simplified services).
where n is the number of all types of the objects.
For each act \in Act:
- pre(act) - precondition of act,
- $\operatorname{eff}($ act $) ~-~ e f f e c t ~ o f ~ a c t . ~$
pre(act), eff(act) $\in \mathbb{N}^{n}$.
Action act \in Act is enabled in $\omega \in \mathcal{W}_{\mathcal{H}}$ iff pre(act) $\leq \omega$ and the results of firing act: $\omega \xrightarrow{\text { act }} \omega+\operatorname{eff}$ (act)

Plans

Given $\mathcal{P}=\left(\mathcal{W}_{\mathcal{H}}, F_{l}, F_{G}, A c t\right), \mathbf{B} \subseteq A c t$

- $\pi \in \Pi\left(\omega, \mathbf{B}, \omega^{\prime}\right)$ iff

$$
\pi=\omega_{0} \xrightarrow{\text { act }_{1}} \omega_{1} \xrightarrow{\text { act }_{2}} \cdots \xrightarrow{\text { act }_{n-1}} \omega_{n-1} \xrightarrow{\text { act }_{n}} \omega_{n}
$$

where $\omega_{0}=\omega, \omega_{n} \geq \omega^{\prime}$, and $\left\{\operatorname{act}_{1}, \ldots\right.$, act $\left._{n}\right\} \subseteq \mathbf{B}$

- $\bigcup_{\omega_{l} \in F_{I}} \bigcup_{\omega_{F} \in F_{G}} \Pi\left(\omega_{l}, \mathbf{B}, \omega_{F}\right)$ - the plans over \mathbf{B}

Each plan starts from an initial world and its last world covers a final world.

Exemplary planning domain

Actions:

- makeVehicle: needs nothing, builds vehicle
- makeCar:
needs vehicle, builds car
- makeBoat:
needs vehicle, builds boat
- makeAmphibian: needs boat and car, builds amphibian
- tinker:
needs amphibian and car, builds two amphibians

Exemplary planning domain, ct'd

Vehicles' inheritance

Order of the objects:
(Vehicle, Car, Boat, Amphibian)

- makeAmphibian: needs boat and car, builds amphibian
$\operatorname{pre}($ makeAmphibian $)=$ $(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0})+(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0})=$ $(2,1,1,0)$
eff $($ makeAmphibian $)=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$

Exemplary planning domain, ct'd

Vehicles' inheritance

Order of the objects:
(Vehicle, Car, Boat, Amphibian)

- makeAmphibian: needs boat and car, builds amphibian
$\operatorname{pre}($ makeAmphibian $)=$ $(1,0,1,0)+(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0})=$
$(2,1,1,0)$
eff $($ makeAmphibian $)=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$

Exemplary planning domain, ct'd

Vehicles' inheritance

Order of the objects:
(Vehicle, Car, Boat, Amphibian)

- makeAmphibian: needs boat and car, builds amphibian
pre $($ makeAmphibian $)=$ $(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0})+(\mathbf{1}, \mathbf{1}, \mathbf{0}, 0)=$ $(2,1,1,0)$
eff $($ makeAmphibian $)=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$

Exemplary planning domain, ct'd

Vehicles' inheritance

Order of the objects:
(Vehicle, Car, Boat, Amphibian)

- makeAmphibian: needs boat and car, builds amphibian
pre $($ makeAmphibian $)=$ $(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0})+(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0})=$ $(2,1,1,0)$
eff $($ makeAmphibian $)=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$

Exemplary planning domain, ct’d

Actions:

- $\operatorname{pre}($ makeVehicle $)=(0,0,0,0)$ $\operatorname{eff}($ makeVehicle $)=(1,0,0,0)$
- $\operatorname{pre}($ makeCar $)=(1,0,0,0)$ eff $($ makeCar $)=(1,1,0,0)$
- $\operatorname{pre}($ makeBoat $)=(1,0,0,0)$ $\operatorname{eff}($ makeBoat $)=(1,0,1,0)$
- pre $($ makeAmphibian $)=(2,1,1,0)$ $\operatorname{eff}($ makeAmphibian $)=(1,1,1,1)$
- $\operatorname{pre}($ tinker $)=(2,2,1,1)$
$\operatorname{eff}($ tinker $)=(2,2,2,2)$
$\omega_{I}=(0,0,0,0)$ (one initial world)
$\omega_{F}=(0,0,0,1)$ (one final world)

Classifying actions

$V_{\text {max }}$ - the largest number occurring in pre(act) for act $\in A c t$.

$$
\operatorname{enact}(\mathbf{A})=\left\{\operatorname{act} \in A c t \mid \sum_{\operatorname{act}^{\prime} \in \mathbf{A}} V_{\max } \cdot \operatorname{eff}\left(\operatorname{act} t^{\prime}\right) \geq \operatorname{pre}(\operatorname{act})\right\}
$$

all actions that can be enabled by firing actions from $\mathbf{A} \subseteq A c t$,
$\omega \in \mathcal{W}_{\mathcal{H}}, i>0$

- $G_{0}^{\omega}=\{$ act \in Act \mid pre $($ act $) \leq \omega\}$ - the actions enabled in ω,
- $G_{i+1}^{\omega}=\operatorname{enact}\left(G_{i}^{\omega}\right)$ - the actions enabled in i-th step
- $H_{0}^{\omega}=G_{0}^{\omega}$,
- $H_{i+1}^{\omega}=G_{i+1}^{\omega} \backslash G_{i}^{\omega}$ - the actions newly enabled in i-th step.

Classifying actions, ct'd

$\omega, \omega^{\prime} \in \mathcal{W}_{\mathcal{H}}$

$$
\operatorname{kgoal}\left(\omega, \omega^{\prime}\right)=\min \left(\left\{k \in \mathbb{N} \mid \sum_{\operatorname{act} \in G_{k}^{\omega}} V_{\max } \cdot \operatorname{eff}(\operatorname{act}) \geq \omega^{\prime}\right\}\right)
$$

the minimal step at which greedily fired actions cover ω^{\prime}.
Lemma A

- $\operatorname{kgoal}\left(\omega, \omega^{\prime}\right)<\infty$ iff $\Pi\left(\omega, A c t, \omega^{\prime}\right) \neq \emptyset$,
- $\operatorname{kgoal}\left(\omega, \omega^{\prime}\right)$ can be computed in time $O\left(|A c t|^{2} \cdot n\right)$.

Planning in \mathcal{P} is easy.

Classifying actions, cont'd

$\omega_{l} \in F_{l}, \omega_{F} \in F_{G}, \operatorname{klimit}\left(\omega_{l}\right)=\min \left(\left\{k \in \mathbb{N} \mid H_{k}^{\omega_{l}}=\emptyset\right\}\right)$

- $\mathcal{E}=A c t \backslash G_{\text {klimit }\left(\omega_{l}\right)}^{\omega_{l}}$ - useless actions can't be enabled
- $\mathcal{G}=G_{\text {kgoal }\left(\omega_{1}, \omega_{F}\right)}^{\omega_{I}}$ - sufficient actions can cover goal
- $\mathcal{R}=\left\{\right.$ act $\in G_{\text {klimit }\left(\omega_{l}\right)}^{\omega_{l}} \mid \operatorname{pre}($ act $\left.) \geq \omega_{F}\right\}$ - redundant actions
- $\mathcal{T}=G_{\text {klimit }\left(\omega_{l}\right)}^{\omega_{l}} \backslash\left(G_{\text {kgoal }\left(\omega_{l}, \omega_{F}\right)}^{\omega_{l}} \cup \mathcal{R}\right)$ - potentially useful acts

Classifying actions, cont'd

Lemma B

Let $A \subseteq A c t$. If there is a plan over A, then A contains at least one element from $H_{i}^{\omega_{l}}$ for all $0 \leq i \leq \operatorname{kgoal}\left(\omega_{I}, \omega_{F}\right)$

First easy reductions:

- throw away redundant (e.g., tinker) and useless actions,
- block all sets of actions that do not satisfy Lemma B.

More reductions: consider none-plans.

None-plans

$\mathbf{A} \subseteq A c t, \omega, \omega^{\prime} \in \mathcal{W}_{\mathcal{H}}$

$$
\mathcal{Z}\left(\omega, \mathbf{A}, \omega^{\prime}\right):=\left\{B \subseteq \mathbf{A} \mid \Pi\left(\omega, B, \omega^{\prime}\right)=\emptyset\right\}
$$

None-plan: a set of actions B, which is not a support of a plan starting at ω and covering ω^{\prime}.
$\mathbb{I}(\omega):=\left\{\omega^{\prime} \mid\left\|\omega^{\prime}\right\|=1 \wedge \omega \geq \omega^{\prime}\right\}$ - unitary coord. vects. of ω e.g., $\mathbb{I}((2,1,1,0))=\{(1,0,0,0),(0,1,0,0),(0,0,1,0)\}$

Characterisation of none-plans

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \nsupseteq \omega^{\prime \prime}}} \bigcap_{\substack{\text { act }(\text { act } t \in A \\ \text { en }}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{\text { act }\}}\right)
$$

where $\mathcal{D}(\omega, \boldsymbol{A}$, act $)=\{\boldsymbol{B} \cup\{$ act $\} \mid \boldsymbol{B} \in \mathcal{Z}(\omega, \boldsymbol{A} \backslash\{$ act $\}$, pre $($ act $))\}$

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \in\left(\omega^{\prime}\right) \\ \omega \nexists \omega^{\prime \prime}}} \bigcap_{\substack{\text { cft } \operatorname{coct} \in A \\ \text { act }) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{a c t\}}\right)
$$

where $\mathcal{D}(\omega, A$, act $)=\{B \cup\{$ act $\} \mid B \in \mathcal{Z}(\omega, \boldsymbol{A} \backslash\{$ act $\}$, pre(act) $)\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime}
take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered
for each action act that could cover $\omega^{\prime \prime}$ when fired
ensure that act cannot be enabled and take it
or throw act away.

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \not \omega^{\prime \prime}}} \bigcap_{\substack{\text { cftct } \operatorname{cact}) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{a c t\}}\right)
$$

where $\mathcal{D}(\omega, \boldsymbol{A}$, act $)=\{\boldsymbol{B} \cup\{$ act $\} \mid \boldsymbol{B} \in \mathcal{Z}(\omega, \boldsymbol{A} \backslash\{$ act $\}$, pre(act) $)\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime}
> take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered
> for each action act that could cover $\omega^{\prime \prime}$ when fired
> ensure that act cannot be enabled and take it
> or throw act away.

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \nexists \omega^{\prime \prime}}} \bigcap_{\substack{\text { act } \in \in A \\ \text { eff(act }) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{\text { act }\}}\right)
$$

where $\mathcal{D}(\omega, A$, act $)=\{B \cup\{$ act $\} \mid B \in \mathcal{Z}(\omega, A \backslash\{$ act $\}$, pre $($ act $))\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime} take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered
for each action act that could cover $\omega^{\prime \prime}$ when fired
ensure that act cannot be enabled and take it
or throw act away.

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \nexists \omega^{\prime \prime}}} \bigcap_{\substack{\text { act } \in \in A \\ \text { eff (act }) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{\text { act }\}}\right)
$$

where $\mathcal{D}(\omega, A$, act $)=\{B \cup\{$ act $\} \mid B \in \mathcal{Z}(\omega, A \backslash\{$ act $\}$, pre $($ act $))\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime} take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered for each action act that could cover $\omega^{\prime \prime}$ when fired
ensure that act cannot be enabled and take it
or throw act away.

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \nexists \omega^{\prime \prime}}} \bigcap_{\substack{\text { act } \in \in A \\ \text { eff }(\mathrm{cct}) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{\text { act }\}}\right)
$$

where $\mathcal{D}(\omega, A$, act $)=\{B \cup\{$ act $\} \mid B \in \mathcal{Z}(\omega, A \backslash\{$ act $\}$, pre $($ act $))\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime} take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered for each action act that could cover $\omega^{\prime \prime}$ when fired ensure that act cannot be enabled and take it
or throw act away.

Characterisation of none-plans, ct'd

Theorem

$$
\mathcal{Z}\left(\omega, A, \omega^{\prime}\right)=\bigcup_{\substack{\omega^{\prime \prime} \in \mathbb{I}\left(\omega^{\prime}\right) \\ \omega \nsupseteq \omega^{\prime \prime}}} \bigcap_{\substack{\text { act } \operatorname{eft}(\text { act }) \geq \omega^{\prime \prime}}}\left(\mathcal{D}(\omega, A, \text { act }) \cup 2^{A \backslash\{\text { act }\}}\right)
$$

where $\mathcal{D}(\omega, A$, act $)=\{B \cup\{$ act $\} \mid B \in \mathcal{Z}(\omega, A \backslash\{$ act $\}$, pre $($ act $))\}$
To find all $B \subseteq A$ that do not make a plan from ω to cover ω^{\prime} take a coordinate $\omega^{\prime \prime}$ of ω^{\prime} that needs to be covered for each action act that could cover $\omega^{\prime \prime}$ when fired ensure that act cannot be enabled and take it or throw act away.

None-plans: tree encoding

```
{makeVehicle, makeCar, makeBoat}
```

 target: \((2,1,1,0)\)

$\mathcal{Z}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\},(2,1,1,0))$
$\mathcal{Z}((0,0,0,0),\{$ make Vehicle, makeCar, makeBoat\}, $\omega)=$
$\mathcal{D}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\}$, makeCar $) \cup 2^{A \backslash\{\text { makeCar }\}} \cup$

None-plans: tree encoding


```
\(\mathcal{Z}((0,0,0,0),\{\) makeVehicle, makeCar, makeBoat \(\},(2,1,1,0))=\)
    \(\bigcup \mathcal{Z}((0,0,0,0),\{\) makeVehicle, makeCar, makeBoat \(\}, \omega)\)
\(\omega \in \mathbb{I}((2,1,1,0))\)
```


None-plans: tree encoding

$\mathcal{Z}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\},(2,1,1,0))=$
$\bigcup \mathcal{Z}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\}, \omega)=$ $\omega \in \mathbb{I}((2,1,1,0))$
$\mathcal{D}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\}$, makeCar $) \cup 2^{A \backslash\{\text { makeCar }\}} \cup \ldots$

None-plans: tree encoding

$\mathcal{Z}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\},(2,1,1,0))=$
$\cup \mathcal{Z}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\}, \omega)=$ $\omega \in \mathbb{I}((2,1,1,0))$
$\mathcal{D}((0,0,0,0),\{$ makeVehicle, makeCar, makeBoat $\}$, makeCar $) \cup 2^{A \backslash\{\text { makeCar }\}} \cup \ldots$

None-plans: the full tree unfolding

One can stop unfolding at depth k to underapproximate the none-plan space.

Back to the original domain

SMT-formulae encoding:

- $\mathcal{A P}$ - encoding of the original domain plan space (courtesy of PlanICS),
- $\mathcal{C} \mathcal{L}$ - blocking sets following from Lemma B,
- $\mathcal{N O} \mathcal{P}^{k}$ - encoding of the none-plan space unfolding up to $k \in \mathbb{N} \cup\{\omega\}$

A new encoding in the original domain plan space:

$$
\widetilde{\mathcal{A P}}^{k}=\mathcal{A P} \wedge \mathcal{C} \mathcal{L} \wedge \neg \mathcal{N} \mathcal{O} \mathcal{P}^{k}
$$

A longer formula: easier or more difficult for an SMT-solver?

Experimental results

Setup:

- random ontologies produced by Ontology Generator
- two experiments/ontology:

First - single plan synthesis
Total - all plan synthesis
Results for reduction:

- First - usually substantial speedup at some depth
- Total - always substantial speedup at some depth

Experimental results, ct'd

NoRedTime - time without reduction
BestRedTime - best time with reduction

Conclusions

- A new method for improving efficiency of algorithms solving hard problems,
- A new reduction method for planning,
- Application of the results in the tool PlanICS: quite impressive improvement in some cases.

Thank you!

